Development and comparison of a minimallyinvasive model of autologous clot pulmonary embolism in Sprague-Dawley and Copenhagen rats

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2010-02
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Background Experimental models of pulmonary embolism (PE) that produce pulmonary hypertension (PH) employ many different methods of inducing acute pulmonary occlusion. Many of these models induce PE with intravenous injection of exogenous impervious objects that may not completely reproduce the physiological properties of autologous thromboembolism. Current literature lacks a simple, well-described rat model of autlogous PE. Objective: Test if moderate-severity autologous PE in Sprague-Dawley (SD) and Copenhagen (Cop) rats can produce persistent PH. Methods blood was withdrawn from the jugular vein, treated with thrombin-Ca++ and re-injected following pretreatment with tranexamic acid. Hemodynamic values, clot weights and biochemical measurements were performed at 1 and 5 days. Results Infusion of clot significantly increased the right ventricular peak systolic pressure to 45-55 mm Hg, followed by normalization within 24 hours in SD rats, and within 5 days in COP rats. Clot lysis was 95% (24 hours) and 97% (5 days) in SD rats and was significantly lower in COP rats (70%, 24 hours; 87% 5 days). Plasma D-dimer was elevated in surgical sham animals and was further increased 8 hours after pulmonary embolism. Neither strain showed a significant increase in bronchoalveolar chemotactic activity, myeloperoxidase activity, leukocyte infiltration, or chemokine accumulation, indicating that there was no significant pulmonary inflammation. Conclusions Both SD and COP rats exhibited near complete fibrinolysis of autologous clot PE within 5 days. Neither strain developed persistent PH. Experimental models of PE designed to induce sustained PH and a robust inflammatory response appear to require significant, persistent pulmonary vascular occlusion.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Runyon, M. S., Gellar, M. A., Sanapareddy, N., Kline, J. A., & Watts, J. A. (2010). Development and comparison of a minimally-invasive model of autologous clot pulmonary embolism in Sprague-Dawley and Copenhagen rats. Thrombosis journal, 8(1), 3.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}