Phospholipase A2 and its Molecular Mechanism after Spinal Cord Injury

Date
2010
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Phospholipases A(2) (PLA(2)s) are a diverse family of lipolytic enzymes which hydrolyze the acyl bond at the sn-2 position of glycerophospholipids to produce free fatty acids and lysophospholipids. These products are precursors of bioactive eicosanoids and platelet-activating factor which have been implicated in pathological states of numerous acute and chronic neurological disorders. To date, more than 27 isoforms of PLA(2) have been found in the mammalian system which can be classified into four major categories: secretory PLA(2), cytosolic PLA(2), Ca(2+)-independent PLA(2), and platelet-activating factor acetylhydrolases. Multiple isoforms of PLA(2) are found in the mammalian spinal cord. Under physiological conditions, PLA(2)s are involved in diverse cellular responses, including phospholipid digestion and metabolism, host defense, and signal transduction. However, under pathological situations, increased PLA(2) activity, excessive production of free fatty acids and their metabolites may lead to the loss of membrane integrity, inflammation, oxidative stress, and subsequent neuronal injury. There is emerging evidence that PLA(2) plays a key role in the secondary injury process after traumatic spinal cord injury. This review outlines the current knowledge of the PLA(2) in the spinal cord with an emphasis being placed on the possible roles of PLA(2) in mediating the secondary SCI.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Liu NK, Xu XM. Phospholipase A2 and its molecular mechanism after spinal cord injury. Mol Neurobiol. 2010;41(2-3):197-205. doi:10.1007/s12035-010-8101-0
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Molecular Neurobiology
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}