Contrasting water use characteristics of riparian trees under different water tables along a losing river

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2022-08
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

Rivers losing flow into surrounding aquifers (‘losing’ rivers) are common under changing climates and groundwater overexploitation. The riparian plant-water relations under various water table dynamics along a losing river remain unclear. In this study, the water isotopes (δ2H and δ18O), leaf δ13C, and MixSIAR model were used combinedly for determining the root water uptake patterns and leaf water use efficiency (WUE) of Salix babylonica (L.) at three sites (A, B, and C) with different water table depths (WTDs) in the riparian zone of Jian and Chaobai River in Beijing, China. The correlations of water source contributions with WTD and WUE were quantified. The riparian S. babylonica primarily took up upper (0–80 cm) soil water (71.5%) with the lowest leaf δ13C (−28.8 ± 1.1 ‰) at site A under deep WTD (20.5 ± 0.5 m). In contrast, deep water below 80 cm depth including groundwater contributed 55.1% to S. babylonica at site B with fluctuated shallow WTD (1.9 ± 0.4 m), where leaf δ13C was highest (−27.9 ± 1.0 ‰). The S. babylonica mainly used soil water in 30–170 cm layer (56.9%) with mean leaf δ13C of − 28.2 ‰ ± 0.7 ‰ at site C with stable shallow WTD (1.5 ± 0.1 m). It was found that both the contributions of upper soil water in 0–80 cm and deep water below 80 cm had significantly quadratic correlations with WTD under shallow water table conditions (p < 0.05). Leaf δ13C was negatively correlated with contributions of upper soil water above 80 cm depth, but it was positively related to the contributions of deep water below 80 cm in linear functions (p < 0.001). The results indicated that 2.1 m was the optimum WTD for riparian trees, because they maximized the use of deep water sources to get the highest WUE. This study provides insights into managing groundwater, surface water resources and riparian afforestation in losing rivers.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Li, Y., Ma, Y., Song, X., Wang, L., Yang, L., Li, X., & Li, B. (2022). Contrasting water use characteristics of riparian trees under different water tables along a losing river. Journal of Hydrology, 611, 128017. https://doi.org/10.1016/j.jhydrol.2022.128017
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Hydrology
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}