Symplectic isotopy on non-minimal ruled surfaces

dc.contributor.authorBuse, Olguta
dc.contributor.authorLi, Jun
dc.contributor.departmentMathematical Sciences, School of Science
dc.date.accessioned2025-05-02T20:00:31Z
dc.date.available2025-05-02T20:00:31Z
dc.date.issued2023
dc.description.abstractWe prove the stability of Symp(X,w) \Diff0(X) for a one-point blow-up of irrational ruled surfaces and study their topological colimit. Non-trivial generators of π0[Symp(X,w) \Diff0(X)] that differ from Lagrangian Dehn twists are detected.
dc.eprint.versionAuthor's manuscript
dc.identifier.citationBuse, O., & Li, J. (2023). Symplectic isotopy on non-minimal ruled surfaces. Mathematische Zeitschrift, 304(3), 44. https://doi.org/10.1007/s00209-023-03298-3
dc.identifier.urihttps://hdl.handle.net/1805/47661
dc.language.isoen
dc.publisherSpringer Nature
dc.relation.isversionof10.1007/s00209-023-03298-3
dc.relation.journalMathematische Zeitschrift
dc.rightsPublisher Policy
dc.sourceArXiv
dc.subjectsymplectomorphism groups
dc.subjectnon-minimal irrational ruled surfaces
dc.titleSymplectic isotopy on non-minimal ruled surfaces
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Buse2023Symplectic-AAM.pdf
Size:
333.53 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: