Symplectic isotopy on non-minimal ruled surfaces
dc.contributor.author | Buse, Olguta | |
dc.contributor.author | Li, Jun | |
dc.contributor.department | Mathematical Sciences, School of Science | |
dc.date.accessioned | 2025-05-02T20:00:31Z | |
dc.date.available | 2025-05-02T20:00:31Z | |
dc.date.issued | 2023 | |
dc.description.abstract | We prove the stability of Symp(X,w) \Diff0(X) for a one-point blow-up of irrational ruled surfaces and study their topological colimit. Non-trivial generators of π0[Symp(X,w) \Diff0(X)] that differ from Lagrangian Dehn twists are detected. | |
dc.eprint.version | Author's manuscript | |
dc.identifier.citation | Buse, O., & Li, J. (2023). Symplectic isotopy on non-minimal ruled surfaces. Mathematische Zeitschrift, 304(3), 44. https://doi.org/10.1007/s00209-023-03298-3 | |
dc.identifier.uri | https://hdl.handle.net/1805/47661 | |
dc.language.iso | en | |
dc.publisher | Springer Nature | |
dc.relation.isversionof | 10.1007/s00209-023-03298-3 | |
dc.relation.journal | Mathematische Zeitschrift | |
dc.rights | Publisher Policy | |
dc.source | ArXiv | |
dc.subject | symplectomorphism groups | |
dc.subject | non-minimal irrational ruled surfaces | |
dc.title | Symplectic isotopy on non-minimal ruled surfaces | |
dc.type | Article |