Diagnosis-guided method for identifying multi-modality neuroimaging biomarkers associated with genetic risk factors in Alzheimer’s disease

dc.contributor.authorHao, Xiaoke
dc.contributor.authorYan, Jingwen
dc.contributor.authorYao, Xiaohui
dc.contributor.authorRisacher, Shannon L.
dc.contributor.authorSaykin, Andrew J.
dc.contributor.authorZhang, Daoqiang
dc.contributor.authorShen, Li
dc.contributor.departmentDepartment of Radiology and Imaging Sciences, IU School of Medicineen_US
dc.date.accessioned2016-07-11T13:56:33Z
dc.date.available2016-07-11T13:56:33Z
dc.date.issued2016
dc.description.abstractMany recent imaging genetic studies focus on detecting the associations between genetic markers such as single nucleotide polymorphisms (SNPs) and quantitative traits (QTs). Although there exist a large number of generalized multivariate regression analysis methods, few of them have used diagnosis information in subjects to enhance the analysis performance. In addition, few of models have investigated the identification of multi-modality phenotypic patterns associated with interesting genotype groups in traditional methods. To reveal disease-relevant imaging genetic associations, we propose a novel diagnosis-guided multi-modality (DGMM) framework to discover multi-modality imaging QTs that are associated with both Alzheimer's disease (AD) and its top genetic risk factor (i.e., APOE SNP rs429358). The strength of our proposed method is that it explicitly models the priori diagnosis information among subjects in the objective function for selecting the disease-relevant and robust multi-modality QTs associated with the SNP. We evaluate our method on two modalities of imaging phenotypes, i.e., those extracted from structural magnetic resonance imaging (MRI) data and fluorodeoxyglucose positron emission tomography (FDG-PET) data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The experimental results demonstrate that our proposed method not only achieves better performances under the metrics of root mean squared error and correlation coefficient but also can identify common informative regions of interests (ROIs) across multiple modalities to guide the disease-induced biological interpretation, compared with other reference methods.en_US
dc.eprint.versionPublished Versionen_US
dc.identifier.citationHao, X., Yan, J., Yao, X., Risacher, S. L., Saykin, A. J., Zhang, D., … ADNI. (2016). Diagnosis-guided method for identifying multi-modality neuroimaging biomarkers associated with genetic risk factors in Alzheimer’s disease. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 21, 108–119.en_US
dc.identifier.urihttps://hdl.handle.net/1805/10341
dc.publishereProceedingsen_US
dc.relation.journalPacific Symposium on Biocomputing. Pacific Symposium on Biocomputingen_US
dc.rightsCC-BY
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourcePublisheren_US
dc.titleDiagnosis-guided method for identifying multi-modality neuroimaging biomarkers associated with genetic risk factors in Alzheimer’s diseaseen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Hao-2016-Diagnosis-Guided.pdf
Size:
1.79 MB
Format:
Adobe Portable Document Format
Description:
Published article
Loading...
Thumbnail Image
Name:
nihms742520.pdf
Size:
505.64 KB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: