Multi-reference global registration of individual A-lines in adaptive optics optical coherence tomography retinal images

dc.contributor.authorKurokawa, Kazuhiro
dc.contributor.authorCrowell, James A.
dc.contributor.authorDo, Nhan
dc.contributor.authorLee, John J.
dc.contributor.authorMiller, Donald T.
dc.contributor.departmentEngineering Technology, Purdue School of Engineering and Technology
dc.date.accessioned2024-08-13T13:14:06Z
dc.date.available2024-08-13T13:14:06Z
dc.date.issued2021
dc.description.abstractSignificance: Adaptive optics optical coherence tomography (AO-OCT) technology enables non-invasive, high-resolution three-dimensional (3D) imaging of the retina and promises earlier detection of ocular disease. However, AO-OCT data are corrupted by eye-movement artifacts that must be removed in post-processing, a process rendered time-consuming by the immense quantity of data. Aim: To efficiently remove eye-movement artifacts at the level of individual A-lines, including those present in any individual reference volume. Approach: We developed a registration method that cascades (1) a 3D B-scan registration algorithm with (2) a global A-line registration algorithm for correcting torsional eye movements and image scaling and generating global motion-free coordinates. The first algorithm corrects 3D translational eye movements to a single reference volume, accelerated using parallel computing. The second algorithm combines outputs of multiple runs of the first algorithm using different reference volumes followed by an affine transformation, permitting registration of all images to a global coordinate system at the level of individual A-lines. Results: The 3D B-scan algorithm estimates and corrects 3D translational motions with high registration accuracy and robustness, even for volumes containing microsaccades. Averaging registered volumes improves our image quality metrics up to 22 dB. Implementation in CUDA™ on a graphics processing unit registers a 512 × 512 × 512 volume in only 10.6 s, 150 times faster than MATLAB™ on a central processing unit. The global A-line algorithm minimizes image distortion, improves regularity of the cone photoreceptor mosaic, and supports enhanced visualization of low-contrast retinal cellular features. Averaging registered volumes improves our image quality up to 9.4 dB. It also permits extending the imaging field of view (∼2.1 × ) and depth of focus (∼5.6 × ) beyond what is attainable with single-reference registration. Conclusions: We can efficiently correct eye motion in all 3D at the level of individual A-lines using a global coordinate system.
dc.eprint.versionFinal published version
dc.identifier.citationKurokawa K, Crowell JA, Do N, Lee JJ, Miller DT. Multi-reference global registration of individual A-lines in adaptive optics optical coherence tomography retinal images [published correction appears in J Biomed Opt. 2021 Jan;26(1). doi: 10.1117/1.JBO.26.1.019803]. J Biomed Opt. 2021;26(1):016001. doi:10.1117/1.JBO.26.1.016001
dc.identifier.urihttps://hdl.handle.net/1805/42751
dc.language.isoen_US
dc.publisherElsevier
dc.relation.isversionof10.1117/1.JBO.26.1.016001
dc.relation.journalJournal of Biomedical Informatics
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourcePMC
dc.subjectThree-dimensional registration
dc.subjectImage registration
dc.subjectAdaptive optics
dc.subjectOptical coherence tomography
dc.subjectParallel processing
dc.titleMulti-reference global registration of individual A-lines in adaptive optics optical coherence tomography retinal images
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kurokawa2021MultiReference-CCBY.pdf
Size:
8.31 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: