Distinct Effects of Adipose-derived Stem Cells and Adipocytes on Normal and Cancer Cell Hierarchy

dc.contributor.authorAnjanappa, Manjushree
dc.contributor.authorBurnett, Riesa
dc.contributor.authorZieger, Michael A.
dc.contributor.authorMerfeld-Clauss, Stephanie
dc.contributor.authorWooden, William
dc.contributor.authorMarch, Kieth
dc.contributor.authorTholpady, Sunil
dc.contributor.authorNakshatri, Harikrishna
dc.contributor.departmentDepartment of Surgery, IU School of Medicineen_US
dc.date.accessioned2017-03-16T19:05:23Z
dc.date.available2017-03-16T19:05:23Z
dc.date.issued2016-07
dc.description.abstractAdipose-derived stem cells (ASC) have received considerable attention in oncology because of the known direct link between obesity and cancer as well as the use of ASCs in reconstructive surgery after tumor ablation. Previous studies have documented how cancer cells commandeer ASCs to support their survival by altering extracellular matrix composition and stiffness, migration, and metastasis. This study focused on delineating the effects of ASCs and adipocytes on the self-renewal of stem/progenitor cells and hierarchy of breast epithelial cells. The immortalized breast epithelial cell line MCF10A, ductal carcinoma in situ (DCIS) cell lines MCF10DCIS.com and SUM225, and MCF10A-overexpressing SRC oncogene were examined using a mammosphere assay and flow cytometry for the effects of ASCs on their self-renewal and stem-luminal progenitor-differentiated cell surface marker profiles. Interestingly, ASCs promoted the self-renewal of all cell types except SUM225. ASC coculture or treatment with ASC conditioned media altered the number of CD49fhigh/EpCAMlow basal/stem-like and CD49fmedium/EpCAMmedium luminal progenitor cells. Among multiple factors secreted by ASCs, IFNγ and hepatocyte growth factor (HGF) displayed unique actions on epithelial cell hierarchy. IFNγ increased stem/progenitor-like cells while simultaneously reducing the size of mammospheres, whereas HGF increased the size of mammospheres with an accompanying increase in luminal progenitor cells. ASCs expressed higher levels of HGF, whereas adipocytes expressed higher levels of IFNγ. As luminal progenitor cells are believed to be prone for transformation, IFNγ and HGF expression status of ASCs may influence susceptibility for developing breast cancer as well as on outcomes of autologous fat transplantation on residual/dormant tumor cells. Implications: This study suggests that the ratio of ASCs to adipocytes influences cancer cell hierarchy, which may impact incidence and progression.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationAnjanappa, M., Burnett, R., Zieger, M. A., Merfeld-Clauss, S., Wooden, W., March, K., ... & Nakshatri, H. (2016). Distinct Effects of Adipose-derived Stem Cells and Adipocytes on Normal and Cancer Cell Hierarchy. Molecular Cancer Research, 14(7), 660-671.en_US
dc.identifier.urihttps://hdl.handle.net/1805/12075
dc.language.isoenen_US
dc.publisherAACRen_US
dc.relation.isversionof10.1158/1541-7786.MCR-16-0055en_US
dc.relation.journalMolecular Cancer Researchen_US
dc.rightsIUPUI Open Access Policyen_US
dc.sourceAuthoren_US
dc.subjectadipose stem cellsen_US
dc.subjectcancer stem cellsen_US
dc.subjectbreast canceren_US
dc.titleDistinct Effects of Adipose-derived Stem Cells and Adipocytes on Normal and Cancer Cell Hierarchyen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Anjanappa_2016_distinct.pdf
Size:
6.51 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: