Derivations and Spectral Triples on Quantum Domains I: Quantum Disk
dc.contributor.author | Klimek, Slawomir | |
dc.contributor.author | McBride, Matt | |
dc.contributor.author | Rathnayake, Sumedha | |
dc.contributor.author | Sakai, Kaoru | |
dc.contributor.author | Wang, Honglin | |
dc.contributor.department | Mathematical Sciences, School of Science | en_US |
dc.date.accessioned | 2018-04-12T15:30:56Z | |
dc.date.available | 2018-04-12T15:30:56Z | |
dc.date.issued | 2017 | |
dc.description.abstract | We study unbounded invariant and covariant derivations on the quantum disk. In particular we answer the question whether such derivations come from operators with compact parametrices and thus can be used to define spectral triples. | en_US |
dc.eprint.version | Author's manuscript | en_US |
dc.identifier.citation | Klimek, S., McBride, M., Rathnayake, S., Sakai, K., & Wang, H. (2017). Derivations and spectral triples on quantum domains I: Quantum disk. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 13. https://doi.org/10.3842/SIGMA.2017.075 | en_US |
dc.identifier.uri | https://hdl.handle.net/1805/15848 | |
dc.language.iso | en | en_US |
dc.relation.isversionof | 10.3842/SIGMA.2017.075 | en_US |
dc.relation.journal | Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) | en_US |
dc.rights | Publisher Policy | en_US |
dc.source | ArXiv | en_US |
dc.subject | invariant and covariant derivations | en_US |
dc.subject | spectral triple | en_US |
dc.subject | quantum disk | en_US |
dc.title | Derivations and Spectral Triples on Quantum Domains I: Quantum Disk | en_US |
dc.type | Article | en_US |