Derivations and Spectral Triples on Quantum Domains I: Quantum Disk

dc.contributor.authorKlimek, Slawomir
dc.contributor.authorMcBride, Matt
dc.contributor.authorRathnayake, Sumedha
dc.contributor.authorSakai, Kaoru
dc.contributor.authorWang, Honglin
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2018-04-12T15:30:56Z
dc.date.available2018-04-12T15:30:56Z
dc.date.issued2017
dc.description.abstractWe study unbounded invariant and covariant derivations on the quantum disk. In particular we answer the question whether such derivations come from operators with compact parametrices and thus can be used to define spectral triples.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationKlimek, S., McBride, M., Rathnayake, S., Sakai, K., & Wang, H. (2017). Derivations and spectral triples on quantum domains I: Quantum disk. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 13. https://doi.org/10.3842/SIGMA.2017.075en_US
dc.identifier.urihttps://hdl.handle.net/1805/15848
dc.language.isoenen_US
dc.relation.isversionof10.3842/SIGMA.2017.075en_US
dc.relation.journalSymmetry, Integrability and Geometry: Methods and Applications (SIGMA)en_US
dc.rightsPublisher Policyen_US
dc.sourceArXiven_US
dc.subjectinvariant and covariant derivationsen_US
dc.subjectspectral tripleen_US
dc.subjectquantum disken_US
dc.titleDerivations and Spectral Triples on Quantum Domains I: Quantum Disken_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Klimek_2017_derivations.pdf
Size:
399.17 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: