Development and Validation of Primary Graft Dysfunction Predictive Algorithm for Lung Transplant Candidates

dc.contributor.authorDiamond, Joshua M.
dc.contributor.authorAnderson, Michaela R.
dc.contributor.authorCantu, Edward
dc.contributor.authorClausen, Emily S.
dc.contributor.authorShashaty, Michael G. S.
dc.contributor.authorKalman, Laurel
dc.contributor.authorOyster, Michelle
dc.contributor.authorCrespo, Maria M.
dc.contributor.authorBermudez, Christian A.
dc.contributor.authorBenvenuto, Luke
dc.contributor.authorPalmer, Scott M.
dc.contributor.authorSnyder, Laurie D.
dc.contributor.authorHartwig, Matthew G.
dc.contributor.authorWille, Keith
dc.contributor.authorHage, Chadi
dc.contributor.authorMcDyer, John F.
dc.contributor.authorMerlo, Christian A.
dc.contributor.authorShah, Pali D.
dc.contributor.authorOrens, Jonathan B.
dc.contributor.authorDhillon, Ghundeep S.
dc.contributor.authorLama, Vibha N.
dc.contributor.authorPatel, Mrunal G.
dc.contributor.authorSinger, Jonathan P.
dc.contributor.authorHachem, Ramsey R.
dc.contributor.authorMichelson, Andrew P.
dc.contributor.authorHsu, Jesse
dc.contributor.authorLocalio, A. Russell
dc.contributor.authorChristie, Jason D.
dc.contributor.departmentMedicine, School of Medicine
dc.date.accessioned2025-05-19T09:10:54Z
dc.date.available2025-05-19T09:10:54Z
dc.date.issued2024
dc.description.abstractBackground: Primary graft dysfunction (PGD) is the leading cause of early morbidity and mortality after lung transplantation. Accurate prediction of PGD risk could inform donor approaches and perioperative care planning. We sought to develop a clinically useful, generalizable PGD prediction model to aid in transplant decision-making. Methods: We derived a predictive model in a prospective cohort study of subjects from 2012 to 2018, followed by a single-center external validation. We used regularized (lasso) logistic regression to evaluate the predictive ability of clinically available PGD predictors and developed a user interface for clinical application. Using decision curve analysis, we quantified the net benefit of the model across a range of PGD risk thresholds and assessed model calibration and discrimination. Results: The PGD predictive model included distance from donor hospital to recipient transplant center, recipient age, predicted total lung capacity, lung allocation score (LAS), body mass index, pulmonary artery mean pressure, sex, and indication for transplant; donor age, sex, mechanism of death, and donor smoking status; and interaction terms for LAS and donor distance. The interface allows for real-time assessment of PGD risk for any donor/recipient combination. The model offers decision-making net benefit in the PGD risk range of 10% to 75% in the derivation centers and 2% to 10% in the validation cohort, a range incorporating the incidence in that cohort. Conclusion: We developed a clinically useful PGD predictive algorithm across a range of PGD risk thresholds to support transplant decision-making, posttransplant care, and enrich samples for PGD treatment trials.
dc.eprint.versionAuthor's manuscript
dc.identifier.citationDiamond JM, Anderson MR, Cantu E, et al. Development and validation of primary graft dysfunction predictive algorithm for lung transplant candidates. J Heart Lung Transplant. 2024;43(4):633-641. doi:10.1016/j.healun.2023.11.019
dc.identifier.urihttps://hdl.handle.net/1805/48210
dc.language.isoen_US
dc.publisherElsevier
dc.relation.isversionof10.1016/j.healun.2023.11.019
dc.relation.journalThe Journal of Heart and Lung Transplantation
dc.rightsPublisher Policy
dc.sourcePMC
dc.subjectDonor
dc.subjectLung transplantation
dc.subjectPrediction
dc.subjectPrimary graft dysfunction
dc.subjectRecipient
dc.titleDevelopment and Validation of Primary Graft Dysfunction Predictive Algorithm for Lung Transplant Candidates
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Diamond2024Development-AAM.pdf
Size:
432.13 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: