Uncovering the dynamic effects of DEX treatment on lung cancer by integrating bioinformatic inference and multiscale modeling of scRNA-seq and proteomics data

Date
2022
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

Lung cancer is one of the leading causes of cancer-related death, with a five-year survival rate of 18%. It is a priority for us to understand the underlying mechanisms affecting lung cancer therapeutics’ implementation and effectiveness. In this study, we combine the power of Bioinformatics and Systems Biology to comprehensively uncover functional and signaling pathways of drug treatment using bioinformatics inference and multiscale modeling of both scRNA-seq data and proteomics data. Based on a time series of lung adenocarcinoma derived A549 cells after DEX treatment, we first identified the differentially expressed genes (DEGs) in those lung cancer cells. Through the interrogation of regulatory network of those DEGs, we identified key hub genes including TGFβ, MYC, and SMAD3 varied underlie DEX treatment. Further gene set enrichment analysis revealed the TGFβ signaling pathway as the top enriched term. Those genes involved in the TGFβ pathway and their crosstalk with the ERBB pathway presented a strong survival prognosis in clinical lung cancer samples. With the basis of biological validation and literature-based curation, a multiscale model of tumor regulation centered on both TGFβ-induced and ERBB-amplified signaling pathways was developed to characterize the dynamic effects of DEX therapy on lung cancer cells. Our simulation results were well matched to available data of SMAD2, FOXO3, TGFβ1, and TGFβR1 over the time course. Moreover, we provided predictions of different doses to illustrate the trend and therapeutic potential of DEX treatment. The innovative and cross-disciplinary approach can be further applied to other computational studies in tumorigenesis and oncotherapy. We released the approach as a user-friendly tool named BIMM (Bioinformatic Inference and Multiscale Modeling), with all the key features available at https://github.com/chenm19/BIMM.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Chen M, Xu C, Xu Z, et al. Uncovering the dynamic effects of DEX treatment on lung cancer by integrating bioinformatic inference and multiscale modeling of scRNA-seq and proteomics data. Comput Biol Med. 2022;149:105999. doi:10.1016/j.compbiomed.2022.105999
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Computers in Biology and Medicine
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}