Stabilization of enzyme-immobilized hydrogels for extended hypoxic cell culture
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
In this work, glucose oxidase (GOx)-immobilized hydrogels are developed and optimized as an easy and convenient means for creating solution hypoxia in a regular incubator. Specifically, acrylated GOx co-polymerizes with poly(ethylene glycol) diacrylate (PEGDA) to form PEGDA-GOx hydrogels. Results show that freeze-drying and reaction by-products, hydrogen peroxide, negatively affect oxygen-consuming activity of network-immobilized GOx. However, the negative effects of freeze-drying can be mitigated by addition of trehalose/raffinose in the hydrogel precursor solution, whereas the inhibition of GOx caused by hydrogen peroxide can be prevented via addition of glutathione (GSH) in the buffer/media. The ability to preserve enzyme activity following freeze-drying and during long-term incubation permits facile application of this material to induce long-term solution/media hypoxia in cell culture plasticware placed in a regular CO2 incubator.