Variations of deep soil moisture under different vegetation types and influencing factors in a watershed of the Loess Plateau, China

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2016-08
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Soil moisture in deep soil layers is a relatively stable water resource for vegetation growth in the semi-arid Loess Plateau of China. Characterizing the variations in deep soil moisture and its influencing factors at a moderate watershed scale is important to ensure the sustainability of vegetation restoration efforts. In this study, we focus on analyzing the variations and factors that influence the deep soil moisture (DSM) in 80–500 cm soil layers based on a soil moisture survey of the Ansai watershed in Yan'an in Shanxi Province. Our results can be divided into four main findings. (1) At the watershed scale, higher variations in the DSM occurred at 120–140 and 480–500 cm in the vertical direction. At the comparable depths, the variation in the DSM under native vegetation was much lower than that in human-managed vegetation and introduced vegetation. (2) The DSM in native vegetation and human-managed vegetation was significantly higher than that in introduced vegetation, and different degrees of soil desiccation occurred under all the introduced vegetation types. Caragana korshinskii and black locust caused the most serious desiccation. (3) Taking the DSM conditions of native vegetation as a reference, the DSM in this watershed could be divided into three layers: (i) a rainfall transpiration layer (80–220 cm); (ii) a transition layer (220–400 cm); and (iii) a stable layer (400–500 cm). (4) The factors influencing DSM at the watershed scale varied with vegetation types. The main local controls of the DSM variations were the soil particle composition and mean annual rainfall; human agricultural management measures can alter the soil bulk density, which contributes to higher DSM in farmland and apple orchards. The plant growth conditions, planting density, and litter water holding capacity of introduced vegetation showed significant relationships with the DSM. The results of this study are of practical significance for vegetation restoration strategies, especially for the choice of vegetation types, planting zones, and proper human management measures.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Fang, X., Zhao, W., Wang, L., Feng, Q., Ding, J., Liu, Y., & Zhang, X. (2016). Variations of deep soil moisture under different vegetation types and influencing factors in a watershed of the Loess Plateau, China. Hydrology and Earth System Sciences, 20(8), 3309-3323.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Hydrology and Earth System Sciences
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}