Characterizing advanced heart failure risk and hemodynamic phenotypes using interpretable machine learning

Date
2024
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Background: Although previous risk models exist for advanced heart failure with reduced ejection fraction (HFrEF), few integrate invasive hemodynamics or support missing data. This study developed and validated a heart failure (HF) hemodynamic risk and phenotyping score for HFrEF, using Machine Learning (ML).

Methods: Prior to modeling, patients in training and validation HF cohorts were assigned to 1 of 5 risk categories based on the composite endpoint of death, left ventricular assist device (LVAD) implantation or transplantation (DeLvTx), and rehospitalization in 6 months of follow-up using unsupervised clustering. The goal of our novel interpretable ML modeling approach, which is robust to missing data, was to predict this risk category (1, 2, 3, 4, or 5) using either invasive hemodynamics alone or a rich and inclusive feature set that included noninvasive hemodynamics (all features). The models were trained using the ESCAPE trial and validated using 4 advanced HF patient cohorts collected from previous trials, then compared with traditional ML models. Prediction accuracy for each of these 5 categories was determined separately for each risk category to generate 5 areas under the curve (AUCs, or C-statistics) for belonging to risk category 1, 2, 3, 4, or 5, respectively.

Results: Across all outcomes, our models performed well for predicting the risk category for each patient. Accuracies of 5 separate models predicting a patient's risk category ranged from 0.896 +/- 0.074 to 0.969 +/- 0.081 for the invasive hemodynamics feature set and 0.858 +/- 0.067 to 0.997 +/- 0.070 for the all features feature set.

Conclusion: Novel interpretable ML models predicted risk categories with a high degree of accuracy. This approach offers a new paradigm for risk stratification that differs from prediction of a binary outcome. Prospective clinical evaluation of this approach is indicated to determine utility for selecting the best treatment approach for patients based on risk and prognosis.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Lamp J, Wu Y, Lamp S, et al. Characterizing advanced heart failure risk and hemodynamic phenotypes using interpretable machine learning. Am Heart J. 2024;271:1-11. doi:10.1016/j.ahj.2024.02.001
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
American Heart Journal
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}