Oligomeric collagen as an encapsulation material for islet/β-cell replacement: effect of islet source, dose, implant site, and administration format

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2020-08
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Physiological Society
Abstract

Replacement of islets/β-cells that provide long-lasting glucose-sensing and insulin-releasing functions has the potential to restore extended glycemic control in individuals with type 1 diabetes. Unfortunately, persistent challenges preclude such therapies from widespread clinical use, including cumbersome administration via portal vein infusion, significant loss of functional islet mass upon administration, limited functional longevity, and requirement for systemic immunosuppression. Previously, fibril-forming type I collagen (oligomer) was shown to support subcutaneous injection and in situ encapsulation of syngeneic islets within diabetic mice, with rapid (<24 h) reversal of hyperglycemia and maintenance of euglycemia for beyond 90 days. Here, we further evaluated this macroencapsulation strategy, defining effects of islet source (allogeneic and xenogeneic) and dose (500 and 800 islets), injection microenvironment (subcutaneous and intraperitoneal), and macrocapsule format (injectable and preformed implantable) on islet functional longevity and recipient immune response. We found that xenogeneic rat islets functioned similarly to or better than allogeneic mouse islets, with only modest improvements in longevity noted with dosage. Additionally, subcutaneous injection led to more consistent encapsulation outcomes along with improved islet health and longevity, compared with intraperitoneal administration, whereas no significant differences were observed between subcutaneous injectable and preformed implantable formats. Collectively, these results document the benefits of incorporating natural collagen for islet/β-cell replacement therapies.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Stephens CH, Morrison RA, McLaughlin M, et al. Oligomeric collagen as an encapsulation material for islet/β-cell replacement: effect of islet source, dose, implant site, and administration format. Am J Physiol Endocrinol Metab. 2020;319(2):E388-E400. doi:10.1152/ajpendo.00066.2020
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
American Journal of Physiology: Endocrinology and Metabolism
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
This item is under embargo {{howLong}}