Molybdenum disulfide nanoflowers mediated anti-inflammation macrophage modulation for spinal cord injury treatment

Date
2019-08
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

Spinal cord injury (SCI) can cause locomotor dysfunctions and sensory deficits. Evidence shows that functional nanodrugs can regulate macrophage polarization and promote anti-inflammatory cytokine expression, which is feasible in SCI immunotherapeutic treatments. Molybdenum disulfide (MoS2) nanomaterials have garnered great attention as potential carriers for therapeutic payload. Herein, we synthesize MoS2@PEG (MoS2 = molybdenum disulfide, PEG = poly (ethylene glycol)) nanoflowers as an effective carrier for loading etanercept (ET) to treat SCI. We characterize drug loading and release properties of MoS2@PEG in vitro and demonstrate that ET-loading MoS2@PEG obviously inhibits the expression of M1-related pro-inflammatory markers (TNF-α, CD86 and iNOS), while promoting M2-related anti-inflammatory markers (Agr1, CD206 and IL-10) levels. In vivo, the mouse model of SCI shows that long-circulating ET-MoS2@PEG nanodrugs can effectively extravasate into the injured spinal cord up to 96 h after SCI, and promote macrophages towards M2 type polarization. As a result, the ET-loading MoS2@PEG administration in mice can protect survival motor neurons, thus, reducing injured areas at central lesion sites, and significantly improving locomotor recovery. This study demonstrates the anti-inflammatory and neuroprotective activities of ET-MoS2@PEG and promising utility of MoS2 nanomaterial-mediated drug delivery.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Sun, G., Yang, S., Cai, H., Shu, Y., Han, Q., Wang, B., … Yin, Z. (2019). Molybdenum disulfide nanoflowers mediated anti-inflammation macrophage modulation for spinal cord injury treatment. Journal of Colloid and Interface Science, 549, pp 50-62. https://doi.org/10.1016/j.jcis.2019.04.047
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Colloid and Interface Science
Rights
Publisher Policy
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}