The Infinite Mixture of Infinite Gaussian Mixtures
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Dirichlet process mixture of Gaussians (DPMG) has been used in the literature for clustering and density estimation problems. However, many real-world data exhibit cluster distributions that cannot be captured by a single Gaussian. Modeling such data sets by DPMG creates several extraneous clusters even when clusters are relatively well-defined. Herein, we present the infinite mixture of infinite Gaussian mixtures (I2GMM) for more flexible modeling of data sets with skewed and multi-modal cluster distributions. Instead of using a single Gaussian for each cluster as in the standard DPMG model, the generative model of I2GMM uses a single DPMG for each cluster. The individual DPMGs are linked together through centering of their base distributions at the atoms of a higher level DP prior. Inference is performed by a collapsed Gibbs sampler that also enables partial parallelization. Experimental results on several artificial and real-world data sets suggest the proposed I2GMM model can predict clusters more accurately than existing variational Bayes and Gibbs sampler versions of DPMG.