Product formulas for the 5-division points on the Tate normal form and the Rogers–Ramanujan continued fraction

dc.contributor.authorMorton, Patrick
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2019-02-15T15:00:26Z
dc.date.available2019-02-15T15:00:26Z
dc.date.issued2019
dc.description.abstractExplicit formulas are proved for the 5-torsion points on the Tate normal form E5 of an elliptic curve having (X,Y)=(0,0) as a point of order 5. These formulas express the coordinates of points in E5[5]−⟨(0,0)⟩ as products of linear fractional quantities in terms of 5-th roots of unity and a parameter u, where the parameter b which defines the curve E5 is given as b=(ε5u5−ε−5)/(u5+1) and ε=(−1+5–√)/2. If r(τ) is the Rogers-Ramanujan continued fraction and b=r5(τ), then the coordinates of points of order 5 in E5[5]−⟨(0,0)⟩ are shown to be products of linear fractional expressions in r(5τ) with coefficients in Q(ζ5).en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationMorton, P. (2019). Product formulas for the 5-division points on the Tate normal form and the Rogers-Ramanujan continued fraction. Journal of Number Theory. https://doi.org/10.1016/j.jnt.2018.12.013en_US
dc.identifier.urihttps://hdl.handle.net/1805/18391
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.jnt.2018.12.013en_US
dc.relation.journalJournal of Number Theoryen_US
dc.rightsPublisher Policyen_US
dc.sourceArXiven_US
dc.subjectTate normal formen_US
dc.subject5-division pointsen_US
dc.subjectRogers–Ramanujan continued fractionen_US
dc.titleProduct formulas for the 5-division points on the Tate normal form and the Rogers–Ramanujan continued fractionen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Morton_2018_product.pdf
Size:
262.66 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: