Positive feedback regulation between RpoS and BosR in the Lyme disease pathogen

Date
2025
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Society for Microbiology
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

In Borrelia burgdorferi, the causative agent of Lyme disease, differential gene expression is primarily governed by the alternative sigma factor RpoS (σS). Understanding the regulation of RpoS is crucial for elucidating how B. burgdorferi is maintained throughout its enzootic cycle. Our recent studies have shown that the homolog of Fur/PerR repressor/activator BosR functions as an RNA-binding protein that controls the rpoS mRNA stability. However, the mechanisms regulating BosR, particularly in response to host signals and environmental cues, remain largely unclear. In this study, we uncovered a positive feedback loop between RpoS and BosR, wherein RpoS post-transcriptionally regulates BosR levels. Specifically, mutation or deletion of rpoS significantly reduced BosR levels, whereas artificial induction of rpoS resulted in a dose-dependent increase in BosR levels. Notably, RpoS does not affect bosR mRNA levels but instead modulates the turnover rate of the BosR protein. Moreover, we demonstrated that environmental cues do not directly influence bosR expression but instead induce rpoS transcription and RpoS production, thereby enhancing BosR protein levels. These findings reveal a new layer of complexity in the RpoN-RpoS regulatory pathway, challenging the existing paradigm and suggesting a need to re-evaluate the factors and signals previously implicated in regulating RpoS via BosR. This study provides new insights into the intricate regulatory networks underpinning B. burgdorferi's adaptation and survival in its enzootic cycle.IMPORTANCELyme disease is the most prevalent arthropod-borne infection in the United States. The etiological agent, Borreliella (or Borrelia) burgdorferi, is maintained in nature through an enzootic cycle involving a tick vector and a mammalian host. RpoS, the master regulator of differential gene expression, plays a crucial role in tick transmission and mammalian infection of B. burgdorferi. This study reveals a positive feedback loop between RpoS and a Fur/PerR homolog. Elucidating this regulatory network is essential for identifying potential therapeutic targets to disrupt B. burgdorferi's enzootic cycle. The findings also have broader implications for understanding the regulation of RpoS and Fur/PerR family in other bacteria.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Raghunandanan S, Priya R, Lin G, et al. Positive feedback regulation between RpoS and BosR in the Lyme disease pathogen. mBio. 2025;16(3):e0276624. doi:10.1128/mbio.02766-24
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
mBio
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}