Programmable high-dimensional Hamiltonian in a photonic waveguide array

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2024-01-02
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer Nature
Abstract

Waveguide lattices offer a compact and stable platform for a range of applications, including quantum walks, condensed matter system simulation, and classical and quantum information processing. However, to date, waveguide lattice devices have been static and designed for specific applications. We present a programmable waveguide array in which the Hamiltonian terms can be individually electro-optically tuned to implement various Hamiltonian continuous-time evolutions on a single device. We used a single array with 11 waveguides in lithium niobate, controlled via 22 electrodes, to perform a range of experiments that realized the Su-Schriffer-Heeger model, the Aubrey-Andre model, and Anderson localization, which is equivalent to over 2500 static devices. Our architecture's micron-scale local electric fields overcome the cross-talk limitations of thermo-optic phase shifters in other platforms such as silicon, silicon-nitride, and silica. Electro-optic control allows for ultra-fast and more precise reconfigurability with lower power consumption, and with quantum input states, our platform can enable the study of multiple condensed matter quantum dynamics with a single device.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Yang Y, Chapman RJ, Haylock B, et al. Programmable high-dimensional Hamiltonian in a photonic waveguide array. Nat Commun. 2024;15(1):50. Published 2024 Jan 2. doi:10.1038/s41467-023-44185-z
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Nature Communications
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}