MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins

Date
2012
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Oxford University Press
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Motivation: Molecular recognition features (MoRFs) are short binding regions located within longer intrinsically disordered regions that bind to protein partners via disorder-to-order transitions. MoRFs are implicated in important processes including signaling and regulation. However, only a limited number of experimentally validated MoRFs is known, which motivates development of computational methods that predict MoRFs from protein chains.

Results: We introduce a new MoRF predictor, MoRFpred, which identifies all MoRF types (α, β, coil and complex). We develop a comprehensive dataset of annotated MoRFs to build and empirically compare our method. MoRFpred utilizes a novel design in which annotations generated by sequence alignment are fused with predictions generated by a Support Vector Machine (SVM), which uses a custom designed set of sequence-derived features. The features provide information about evolutionary profiles, selected physiochemical properties of amino acids, and predicted disorder, solvent accessibility and B-factors. Empirical evaluation on several datasets shows that MoRFpred outperforms related methods: α-MoRF-Pred that predicts α-MoRFs and ANCHOR which finds disordered regions that become ordered when bound to a globular partner. We show that our predicted (new) MoRF regions have non-random sequence similarity with native MoRFs. We use this observation along with the fact that predictions with higher probability are more accurate to identify putative MoRF regions. We also identify a few sequence-derived hallmarks of MoRFs. They are characterized by dips in the disorder predictions and higher hydrophobicity and stability when compared to adjacent (in the chain) residues.

Availability: http://biomine.ece.ualberta.ca/MoRFpred/; http://biomine.ece.ualberta.ca/MoRFpred/Supplement.pdf.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Disfani FM, Hsu WL, Mizianty MJ, et al. MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins. Bioinformatics. 2012;28(12):i75-i83. doi:10.1093/bioinformatics/bts209
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Bioinformatics
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}