Measurement of the Casimir Force between 0.2 and 8 μm: Experimental Procedures and Comparison with Theory

Date
2021
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
MDPI
Abstract

We present results on the determination of the differential Casimir force between an Aucoated sapphire sphere and the top and bottom of Au-coated deep silicon trenches performed by means of the micromechanical torsional oscillator in the range of separations from 0.2 to 8 μm. The random and systematic errors in the measured force signal are determined at the 95% confidence level and combined into the total experimental error. The role of surface roughness and edge effects is investigated and shown to be negligibly small. The distribution of patch potentials is characterized by Kelvin probe microscopy, yielding an estimate of the typical size of patches, the respective r.m.s. voltage and their impact on the measured force. A comparison between the experimental results and theory is performed with no fitting parameters. For this purpose, the Casimir force in the sphere-plate geometry is computed independently on the basis of first principles of quantum electrodynamics using the scattering theory and the gradient expansion. In doing so, the frequency-dependent dielectric permittivity of Au is found from the optical data extrapolated to zero frequency by means of the plasma and Drude models. It is shown that the measurement results exclude the Drude model extrapolation over the region of separations from 0.2 to 4.8 μm, whereas the alternative extrapolation by means of the plasma model is experimentally consistent over the entire measurement range. A discussion of the obtained results is provided.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Bimonte G, Spreng B, Maia Neto PA, et al. Measurement of the Casimir Force between 0.2 and 8 μm: Experimental Procedures and Comparison with Theory. Universe. 2021;7(4):93. doi:10.3390/universe7040093
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Universe
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}