Optimizing differential identifiability improves connectome predictive modeling of cognitive deficits from functional connectivity in Alzheimer's disease

dc.contributor.authorSvaldi, Diana O.
dc.contributor.authorGoñi, Joaquín
dc.contributor.authorAbbas, Kausar
dc.contributor.authorAmico, Enrico
dc.contributor.authorClark, David G.
dc.contributor.authorMuralidharan, Charanya
dc.contributor.authorDzemidzic, Mario
dc.contributor.authorWest, John D.
dc.contributor.authorRisacher, Shannon L.
dc.contributor.authorSaykin, Andrew J.
dc.contributor.authorApostolova, Liana G.
dc.contributor.departmentMedicine, School of Medicineen_US
dc.date.accessioned2022-07-26T14:50:43Z
dc.date.available2022-07-26T14:50:43Z
dc.date.issued2021-08
dc.description.abstractFunctional connectivity, as estimated using resting state functional MRI, has shown potential in bridging the gap between pathophysiology and cognition. However, clinical use of functional connectivity biomarkers is impeded by unreliable estimates of individual functional connectomes and lack of generalizability of models predicting cognitive outcomes from connectivity. To address these issues, we combine the frameworks of connectome predictive modeling and differential identifiability. Using the combined framework, we show that enhancing the individual fingerprint of resting state functional connectomes leads to robust identification of functional networks associated to cognitive outcomes and also improves prediction of cognitive outcomes from functional connectomes. Using a comprehensive spectrum of cognitive outcomes associated to Alzheimer's disease (AD), we identify and characterize functional networks associated to specific cognitive deficits exhibited in AD. This combined framework is an important step in making individual level predictions of cognition from resting state functional connectomes and in understanding the relationship between cognition and connectivity.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationSvaldi, D. O., Goñi, J., Abbas, K., Amico, E., Clark, D. G., Muralidharan, C., Dzemidzic, M., West, J. D., Risacher, S. L., Saykin, A. J., & Apostolova, L. G. (2021). Optimizing differential identifiability improves connectome predictive modeling of cognitive deficits from functional connectivity in Alzheimer’s disease. Human Brain Mapping, 42(11), 3500–3516. https://doi.org/10.1002/hbm.25448en_US
dc.identifier.issn1065-9471, 1097-0193en_US
dc.identifier.urihttps://hdl.handle.net/1805/29631
dc.language.isoen_USen_US
dc.publisherWileyen_US
dc.relation.isversionof10.1002/hbm.25448en_US
dc.relation.journalHuman Brain Mappingen_US
dc.rightsAttribution 4.0 United States
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourcePublisheren_US
dc.subjectAlzheimer's diseaseen_US
dc.subjectfunctional connectivityen_US
dc.subjectpredictive modelingen_US
dc.subjectcognitionen_US
dc.titleOptimizing differential identifiability improves connectome predictive modeling of cognitive deficits from functional connectivity in Alzheimer's diseaseen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Svaldi2021Optimizing-CCBY.pdf
Size:
4.64 MB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: