Structural insights into IMP2 dimerization and RNA binding
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
IGF2BP2 (IMP2) is an RNA-binding protein that contributes to cancer tumorigenesis and metabolic disorders. Structural studies focused on individual IMP2 domains have provided important mechanistic insights into IMP2 function; however, structural information on full-length IMP2 is lacking but necessary to understand how to target IMP2 activity in drug discovery. In this study, we investigated the behavior of full-length IMP2 and the influence of RNA binding using biophysical and structural methods including mass photometry, hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS), and small angle x-ray scattering (SAXS). We found that full-length IMP2 forms multiple oligomeric states but predominantly adopts a dimeric conformation. Molecular models derived from SAXS data suggest the dimer is formed in a head-to-tail orientation by the KH34 and RRM1 domains. Upon RNA binding, IMP2 forms a pseudo-symmetric dimer different from its apo/RNA-free state, with the KH12 domains of each IMP2 molecule forming the dimer interface. We also found that the formation of IMP2 oligomeric species, which includes dimers and higher-order oligomers, is sensitive to ionic strength and RNA binding. Our findings provide the first insight into the structural properties of full-length IMP2, which may lead to novel opportunities for disrupting its function with more effective IMP2 inhibitors.