Sodium Pyruvate Reduced Hypoxic-Ischemic Injury to Neonatal Rat Brain

Date
2012
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer Nature
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Background: Neonatal hypoxia-ischemia (HI) remains a major cause of severe brain damage and is often associated with high mortality and lifelong disability. Immature brains are extremely sensitive to HI, shown as prolonged mitochondrial neuronal death. Sodium pyruvate (SP), a substrate of the tricarboxylic acid cycle and an extracellular antioxidant, has been considered as a potential treatment for hypoxic-ischemic encephalopathy, but its effects have not been evaluated in appropriate animal models for hypoxic-ischemic encephalopathy.

Methods: This investigation used primary cortical neuron cultures derived from neonatal rats subjected to oxygen and glucose deprivation (OGD) and a well-established neonatal rat HI model.

Results: HI caused brain tissue loss and impaired sensorimotor function and spatial memory whereas SP significantly reduced brain damage and improved neurological performance. These neuroprotective effects of SP are likely the result of improved cerebral metabolism as demonstrated by maintaining adenosine triphosphate (ATP) levels and preventing an increase in intracellular reactive oxygen species (ROS) levels. SP treatment also decreased levels of Bax, a death signal for immature neurons, blocked caspase-3 activation, and activated a key survival signaling kinase, Akt, both in vitro and in vivo.

Conclusion: SP protected neonatal brain from hypoxic-ischemic injury through maintaining cerebral metabolism and mitochondrial function.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Pan R, Rong Z, She Y, Cao Y, Chang LW, Lee WH. Sodium pyruvate reduces hypoxic-ischemic injury to neonatal rat brain. Pediatr Res. 2012;72(5):479-489. doi:10.1038/pr.2012.107
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Pediatric Research
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}