Determination of Internal Elevation Fluctuation from CCTV Footage of Sanitary Sewers Using Deep Learning

Date
2021
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
MDPI
Abstract

The slope of sewer pipes is a major factor for transporting sewage at designed flow rates. However, the gradient inside the sewer pipe changes locally for various reasons after construction. This causes flow disturbances requiring investigation and appropriate maintenance. This study extracted the internal elevation fluctuation from closed-circuit television investigation footage, which is required for sanitary sewers. The principle that a change in water level in sewer pipes indirectly indicates a change in elevation was applied. The sewage area was detected using a convolutional neural network, a type of deep learning technique, and the water level was calculated using the geometric principles of circles and proportions. The training accuracy was 98%, and the water level accuracy compared to random sampling was 90.4%. Lateral connections, joints, and outliers were removed, and a smoothing method was applied to reduce data fluctuations. Because the target sewer pipes are 2.5 m concrete reinforced pipes, the joint elevation was determined every 2.5 m so that the internal slope of the sewer pipe would consist of 2.5 m linear slopes. The investigative method proposed in this study is effective with high economic feasibility and sufficient accuracy compared to the existing sensor-based methods of internal gradient investigation.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Ji HW, Yoo SS, Koo DD, Kang JH. Determination of Internal Elevation Fluctuation from CCTV Footage of Sanitary Sewers Using Deep Learning. Water. 2021;13(4):503. doi:10.3390/w13040503
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Water
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}