The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2021-06
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

T regulatory (Treg) cells are crucial to maintain immune tolerance and repress antitumor immunity, but the mechanisms governing their cellular redox homeostasis remain elusive. We report that glutathione peroxidase 4 (Gpx4) prevents Treg cells from lipid peroxidation and ferroptosis in regulating immune homeostasis and antitumor immunity. Treg-specific deletion of Gpx4 impairs immune homeostasis without substantially affecting survival of Treg cells at steady state. Loss of Gpx4 results in excessive accumulation of lipid peroxides and ferroptosis of Treg cells upon T cell receptor (TCR)/CD28 co-stimulation. Neutralization of lipid peroxides and blockade of iron availability rescue ferroptosis of Gpx4-deficient Treg cells. Moreover, Gpx4-deficient Treg cells elevate generation of mitochondrial superoxide and production of interleukin-1β (IL-1β) that facilitates T helper 17 (TH17) responses. Furthermore, Treg-specific ablation of Gpx4 represses tumor growth and concomitantly potentiates antitumor immunity. Our studies establish a crucial role for Gpx4 in protecting activated Treg cells from lipid peroxidation and ferroptosis and offer a potential therapeutic strategy to improve cancer treatment.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Xu, C., Sun, S., Johnson, T., Qi, R., Zhang, S., Zhang, J., & Yang, K. (2021). The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity. Cell Reports, 35(11), 109235. https://doi.org/10.1016/j.celrep.2021.109235
ISSN
22111247
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Cell Reports
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}