Arithmetic properties of 3-cycles of quadratic maps over Q

dc.contributor.authorMorton, Patrick
dc.contributor.authorRaianu, Serban
dc.contributor.departmentMathematical Sciences, School of Science
dc.date.accessioned2023-11-01T18:57:46Z
dc.date.available2023-11-01T18:57:46Z
dc.date.issued2022-11
dc.description.abstractIt is shown that c = -29/16 is the unique rational number of smallest denominator, and the unique rational number of smallest numerator, for which the map fc(x) = x2 + c has a rational periodic point of period 3. Several arithmetic conditions on the set of all such rational numbers c and the rational orbits of fc(x) are proved. A graph on the numerators of the rational 3-periodic points of maps fc is considered which reflects connections between solutions of norm equations from the cubic field of discriminant -23.
dc.eprint.versionAuthor's manuscript
dc.identifier.citationMorton, P., & Raianu, S. (2022). Arithmetic properties of 3-cycles of quadratic maps over Q. Journal of Number Theory, 240, 685–729. https://doi.org/10.1016/j.jnt.2022.01.005
dc.identifier.urihttps://hdl.handle.net/1805/36851
dc.language.isoen_US
dc.publisherElsevier
dc.relation.isversionof10.1016/j.jnt.2022.01.005
dc.relation.journalJournal of Number Theory
dc.rightsPublisher Policy
dc.sourceArXiv
dc.subjectarithmetic properties
dc.subjectquadratic map
dc.subjectperiodic points
dc.subjectrational orbits
dc.subjectrational numbers
dc.titleArithmetic properties of 3-cycles of quadratic maps over Q
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Morton2022Arithmetic-AAM.pdf
Size:
754.6 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: