Understanding the Integrated Pathophysiological Role of a Moonlighting Protein in Lung Development

Date
2019-08
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2019
Department
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Sensing, integrating, and relaying signals from the environment through proteins, metabolites, and lipids to the lung are critical for proper development. Moonlighting proteins, such as AIMP1, are a unique subset that serves at least two independent physiological functions. Encoded by gene AIMP1, AIMP1 has two known functions: (1) C-terminus EMAP II domain of full-length AIMP1 can be secreted out of the cell to chemoattract myeloid cells; (2) intracellular full-length protein interacts with tRNA synthetases in protein translation. However, despite the linkage of protein expression levels of with several lung pathologies such as bronchopulmonary dysplasia (BPD), effectively targeting the protein encoded by AIMP1 has been a challenge due to poorly understood mechanisms. This thesis explores physiological, signaling, and immunological moonlighting mechanisms of first, the extracellular EMAP II then the intracellular AIMP1. Experiments utilize both in vitro and in vivo models, including a murine model of BPD and Cre-mediated exon-deletion knockout. Experimental results provide evidence that in the BPD model, EMAP II levels are elevated and sustained – first in bronchial epithelial cells then in macrophages. Mice exposed to sustained and elevated EMAP II protein levels resemble the BPD phenotype while neutralization partially rescued the phenotype, implying EMAP II as a potential therapeutic target against BPD. Results from studies exploring EMAP II’s signaling mechanism identify transient stimulation of JAK-STAT3 phosphorylation, commonly found in inflammation-resolving macrophages. In contrast, it induces unique transcriptional changes that are reversible both by JAK-STAT inhibitor and siRNA-mediated knockdown of Stat3. Studies using AIMP1 knockout mouse reveal a novel function for the intracellular AIMP1. AIMP1 knockout mice exhibited neonatal lethality with a respiratory distress phenotype, decreased type I alveolar cell expression, and disorganized bronchial epithelium, suggesting a role in lung maturation. In vitro experiments suggest that a portion of AIMP1 residing in the cell’s membrane interacts with various phosphatidylinositols and contributes toward F-actin deposition and assembly. Data from these experimental studies provide insight into how the various functions of the promiscuous AIMP1 gene affect lung development. These studies exemplify not only characterize novel moonlighting mechanisms of AIMP1, but also highlight the importance of characterizing moonlighting proteins to promote therapeutic preventions.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}
2020-02-21