Simulation and Validation of Three Dimension Functionally Graded Materials by Material Jetting

If you need an accessible version of this item, please submit a remediation request.
Date
2018-08
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

The goal of this work is to validate the material models for parts created with a Material Jetting 3-dimensional printer through the comparison of Finite Element Analysis (FEA) simulations and physical tests. The strain maps generated by a video extensometer for multi-material samples are compared to the FEA results based on our material models. Two base materials (ABS-like and rubber-like) and their composites are co-printed in the graded tensile test samples. The graded islands are embedded in the rubber-like test specimens. The simulations were conducted utilizing previously fitted material models, a two-parameter Mooney-Rivlin model for the elastic materials (Tango Black+, DM95, and DM60) and a bilinear model for the rigid material (Vero White+). The results show that the simulation results based on our material models can predict the deformation behaviors of the multi-material samples during a uniaxial tensile test. Our simulation results are able to predict the maximum strain in the matrix material (TB+) within 5% error. Both global deformation pattern and local strain level confirm the validity of the simulated material models.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Salcedo, E., Baek, D., Berndt, A., & Ryu, J. E. (2018). Simulation and validation of three dimension functionally graded materials by material jetting. Additive Manufacturing, 22, 351–359. https://doi.org/10.1016/j.addma.2018.05.027
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Additive Manufacturing
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}