A novel Synthetic phenotype association study approach reveals the landscape of association for genomic variants and phenotypes

dc.contributor.authorŠkrabišová, Mária
dc.contributor.authorDietz, Nicholas
dc.contributor.authorZeng, Shuai
dc.contributor.authorChan, Yen On
dc.contributor.authorWang, Juexin
dc.contributor.authorLiu, Yang
dc.contributor.authorBiová, Jana
dc.contributor.authorJoshi, Trupti
dc.contributor.authorBilyeu, Kristin D.
dc.contributor.departmentMedical and Molecular Genetics, School of Medicine
dc.date.accessioned2025-01-17T12:17:48Z
dc.date.available2025-01-17T12:17:48Z
dc.date.issued2022
dc.description.abstractIntroduction: Genome-Wide Association Studies (GWAS) identify tagging variants in the genome that are statistically associated with the phenotype because of their linkage disequilibrium (LD) relationship with the causative mutation (CM). When both low-density genotyped accession panels with phenotypes and resequenced data accession panels are available, tagging variants can assist with post-GWAS challenges in CM discovery. Objectives: Our objective was to identify additional GWAS evaluation criteria to assess correspondence between genomic variants and phenotypes, as well as enable deeper analysis of the localized landscape of association. Methods: We used genomic variant positions as Synthetic phenotypes in GWAS that we named "Synthetic phenotype association study" (SPAS). The extreme case of SPAS is what we call an "Inverse GWAS" where we used CM positions of cloned soybean genes. We developed and validated the Accuracy concept as a measure of the correspondence between variant positions and phenotypes. Results: The SPAS approach demonstrated that the genotype status of an associated variant used as a Synthetic phenotype enabled us to explore the relationships between tagging variants and CMs, and further, that utilizing CMs as Synthetic phenotypes in Inverse GWAS illuminated the landscape of association. We implemented the Accuracy calculation for a curated accession panel to an online Accuracy calculation tool (AccuTool) as a resource for gene identification in soybean. We demonstrated our concepts on three examples of soybean cloned genes. As a result of our findings, we devised an enhanced "GWAS to Genes" analysis (Synthetic phenotype to CM strategy, SP2CM). Using SP2CM, we identified a CM for a novel gene. Conclusion: The SP2CM strategy utilizing Synthetic phenotypes and the Accuracy calculation of correspondence provides crucial information to assist researchers in CM discovery. The impact of this work is a more effective evaluation of landscapes of GWAS associations.
dc.eprint.versionFinal published version
dc.identifier.citationŠkrabišová M, Dietz N, Zeng S, et al. A novel Synthetic phenotype association study approach reveals the landscape of association for genomic variants and phenotypes. J Adv Res. 2022;42:117-133. doi:10.1016/j.jare.2022.04.004
dc.identifier.urihttps://hdl.handle.net/1805/45295
dc.language.isoen_US
dc.publisherElsevier
dc.relation.isversionof10.1016/j.jare.2022.04.004
dc.relation.journalJournal of Advanced Research
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.sourcePMC
dc.subjectGenome-Wide Association Studies (GWAS)
dc.subjectGenomics
dc.subjectGenotyping
dc.subjectPhenotyping
dc.subjectResequencing
dc.subjectSoybean
dc.titleA novel Synthetic phenotype association study approach reveals the landscape of association for genomic variants and phenotypes
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Škrabišová2022Novel-CCBYNCND.pdf
Size:
2.65 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: