Learning from the crowd while mapping to LOINC
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
OBJECTIVE: To describe the perspectives of Regenstrief LOINC Mapping Assistant (RELMA) users before and after the deployment of Community Mapping features, characterize the usage of these new features, and analyze the quality of mappings submitted to the community mapping repository. METHODS: We evaluated Logical Observation Identifiers Names and Codes (LOINC) community members' perceptions about new "wisdom of the crowd" information and how they used the new RELMA features. We conducted a pre-launch survey to capture users' perceptions of the proposed functionality of these new features; monitored how the new features and data available via those features were accessed; conducted a follow-up survey about the use of RELMA with the Community Mapping features; and analyzed community mappings using automated methods to detect potential errors. RESULTS: Despite general satisfaction with RELMA, nearly 80% of 155 respondents to our pre-launch survey indicated that having information on how often other users had mapped to a particular LOINC term would be helpful. During the study period, 200 participants logged into the RELMA Community Mapping features an average of 610 times per month and viewed the mapping detail pages a total of 6686 times. Fifty respondents (25%) completed our post-launch survey, and those who accessed the Community Mapping features unanimously indicated that they were useful. Overall, 95.3% of the submitted mappings passed our automated validation checks. CONCLUSION: When information about other institutions' mappings was made available, study participants who accessed it agreed that it was useful and informed their mapping choices. Our findings suggest that a crowd-sourced repository of mappings is valuable to users who are mapping local terms to LOINC terms.