Insulin secretion deficits in a Prader-Willi syndrome β-cell model are associated with a concerted downregulation of multiple endoplasmic reticulum chaperones

If you need an accessible version of this item, please submit a remediation request.
Date
2023-04-17
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Public Library of Science
Abstract

Prader-Willi syndrome (PWS) is a multisystem disorder with neurobehavioral, metabolic, and hormonal phenotypes, caused by loss of expression of a paternally-expressed imprinted gene cluster. Prior evidence from a PWS mouse model identified abnormal pancreatic islet development with retention of aged insulin and deficient insulin secretion. To determine the collective roles of PWS genes in β-cell biology, we used genome-editing to generate isogenic, clonal INS-1 insulinoma lines having 3.16 Mb deletions of the silent, maternal- (control) and active, paternal-allele (PWS). PWS β-cells demonstrated a significant cell autonomous reduction in basal and glucose-stimulated insulin secretion. Further, proteomic analyses revealed reduced levels of cellular and secreted hormones, including all insulin peptides and amylin, concomitant with reduction of at least ten endoplasmic reticulum (ER) chaperones, including GRP78 and GRP94. Critically, differentially expressed genes identified by whole transcriptome studies included reductions in levels of mRNAs encoding these secreted peptides and the group of ER chaperones. In contrast to the dosage compensation previously seen for ER chaperones in Grp78 or Grp94 gene knockouts or knockdown, compensation is precluded by the stress-independent deficiency of ER chaperones in PWS β-cells. Consistent with reduced ER chaperones levels, PWS INS-1 β-cells are more sensitive to ER stress, leading to earlier activation of all three arms of the unfolded protein response. Combined, the findings suggest that a chronic shortage of ER chaperones in PWS β-cells leads to a deficiency of protein folding and/or delay in ER transit of insulin and other cargo. In summary, our results illuminate the pathophysiological basis of pancreatic β-cell hormone deficits in PWS, with evolutionary implications for the multigenic PWS-domain, and indicate that PWS-imprinted genes coordinate concerted regulation of ER chaperone biosynthesis and β-cell secretory pathway function.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Koppes EA, Johnson MA, Moresco JJ, et al. Insulin secretion deficits in a Prader-Willi syndrome β-cell model are associated with a concerted downregulation of multiple endoplasmic reticulum chaperones. PLoS Genet. 2023;19(4):e1010710. Published 2023 Apr 17. doi:10.1371/journal.pgen.1010710
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
PLoS Genetics
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}