CRISPR-Cas9-mediated homology-directed repair for precise gene editing

Date
2024-09-26
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

CRISPR-Cas9-mediated homology-directed repair (HDR) is a versatile platform for creating precise site-specific DNA insertions, deletions, and substitutions. These precise edits are made possible through the use of exogenous donor templates that carry the desired sequence. CRISPR-Cas9-mediated HDR can be widely used to study protein functions, disease modeling, and gene therapy. However, HDR is limited by its low efficiency, especially in postmitotic cells. Here, we review CRISPR-Cas9-mediated HDR, with a focus on methodologies for boosting HDR efficiency, and applications of precise editing via HDR. First, we describe two common mechanisms of DNA repair, non-homologous end joining (NHEJ), and HDR, and discuss their impact on CRISPR-Cas9-mediated precise genome editing. Second, we discuss approaches for improving HDR efficiency through inhibition of the NHEJ pathway, activation of the HDR pathway, modification of donor templates, and delivery of Cas9/sgRNA reagents. Third, we summarize the applications of HDR for protein labeling in functional studies, disease modeling, and ex vivo and in vivo gene therapies. Finally, we discuss alternative precise editing platforms and their limitations, and describe potential avenues to improving CRISPR-Cas9-mediated HDR efficiency and fidelity in future research.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Liao H, Wu J, VanDusen NJ, Li Y, Zheng Y. CRISPR-Cas9-mediated homology-directed repair for precise gene editing. Mol Ther Nucleic Acids. 2024;35(4):102344. Published 2024 Sep 26. doi:10.1016/j.omtn.2024.102344
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Molecular Therapy - Nucleic Acids
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}