Associating Multi-modal Brain Imaging Phenotypes and Genetic Risk Factors via A Dirty Multi-task Learning Method

dc.contributor.authorDu, Lei
dc.contributor.authorLiu, Fang
dc.contributor.authorLiu, Kefei
dc.contributor.authorYao, Xiaohui
dc.contributor.authorRisacher, Shannon L.
dc.contributor.authorHan, Junwei
dc.contributor.authorSaykin, Andrew J.
dc.contributor.authorShen, Li
dc.contributor.departmentRadiology and Imaging Sciences, School of Medicineen_US
dc.date.accessioned2023-03-29T17:18:41Z
dc.date.available2023-03-29T17:18:41Z
dc.date.issued2020
dc.description.abstractBrain imaging genetics becomes more and more important in brain science, which integrates genetic variations and brain structures or functions to study the genetic basis of brain disorders. The multi-modal imaging data collected by different technologies, measuring the same brain distinctly, might carry complementary information. Unfortunately, we do not know the extent to which the phenotypic variance is shared among multiple imaging modalities, which further might trace back to the complex genetic mechanism. In this paper, we propose a novel dirty multi-task sparse canonical correlation analysis (SCCA) to study imaging genetic problems with multi-modal brain imaging quantitative traits (QTs) involved. The proposed method takes advantages of the multi-task learning and parameter decomposition. It can not only identify the shared imaging QTs and genetic loci across multiple modalities, but also identify the modality-specific imaging QTs and genetic loci, exhibiting a flexible capability of identifying complex multi-SNP-multi-QT associations. Using the state-of-the-art multi-view SCCA and multi-task SCCA, the proposed method shows better or comparable canonical correlation coefficients and canonical weights on both synthetic and real neuroimaging genetic data. In addition, the identified modality-consistent biomarkers, as well as the modality-specific biomarkers, provide meaningful and interesting information, demonstrating the dirty multi-task SCCA could be a powerful alternative method in multi-modal brain imaging genetics.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationDu L, Liu F, Liu K, et al. Associating Multi-Modal Brain Imaging Phenotypes and Genetic Risk Factors via a Dirty Multi-Task Learning Method. IEEE Trans Med Imaging. 2020;39(11):3416-3428. doi:10.1109/TMI.2020.2995510en_US
dc.identifier.urihttps://hdl.handle.net/1805/32114
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/TMI.2020.2995510en_US
dc.relation.journalIEEE Transactions on Medical Imagingen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectBrain imaging geneticsen_US
dc.subjectSparse canonical correlation analysisen_US
dc.subjectMulti-task learningen_US
dc.subjectAlzheimer diseaseen_US
dc.titleAssociating Multi-modal Brain Imaging Phenotypes and Genetic Risk Factors via A Dirty Multi-task Learning Methoden_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms-1641892.pdf
Size:
1.46 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: