Durable scalable 3D SLA-printed cuff electrodes with high performance carbon + PEDOT:PSS-based contacts

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2022
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Abstract

Background: The stimulation and recording performance of implanted neural interfaces are functions of the physical and electrical characteristics of the neural interface, its electrode material and structure. Therefore, rapid optimization of such characteristics is becoming critical in most clinical and research studies. This paper describes the development of an upgraded 3D printed cuff electrode shell design containing a novel intrinsically conductive polymer (ICP) for stimulation and recording of peripheral nerve fibers.

Methods: A 3D stereolithography (SLA) printer was used to print a scalable, custom designed, C-cuff electrode and I-beam closure for accurate, rapid implementation. A novel contact consisting of a percolated carbon graphite base electrodeposited with an intrinsically conductive polymer (ICP), poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) produced a PEDOT:PSS + carbon black (CB) matrix that was used to form the electrochemical interface on the structure. Prototype device performance was tested both in-vitro and in-vivo for electrical chemical capacity, electrochemical interfacial impedance, surgical handling, and implantability. The in-vivo work was performed on the sciatic nerve of 25 anesthetized Sprague Dawley rats to demonstrate recording and stimulating ability.

Results: Prototypes of different spatial geometries and number of contacts (bipolar, tripolar, and tetrapolar) were designed. The design was successfully printed with inner diameters down to 500 μm. Standard bipolar and tripolar cuffs, with a 1.3 mm inner diameter (ID), 0.5 mm contact width, 1.0 mm pitch, and a 1.5 mm end distance were used for the functional tests. This geometry was appropriate for placement on the rat sciatic nerve and enabled in-vivo testing in anesthetized rats. The contacts on the standard bipolar electrode had an area of 2.1 × 10-2 cm2 . Cyclic voltammetry on ICP coated and uncoated graphite contacts showed that the ICP increased the average charge storage capacity (CSC) by a factor of 30. The corresponding impedance at 1 Hz was slightly above 1 kΩ, a 99.99% decrease from 100 kΩ in the uncoated state. The statistical comparison of the pre- versus post-stimulation impedance measurements were not significantly different (p-value > 0.05).

Conclusions: The new cuff electrode enables rapid development of cost-effective functional stimulation devices targeting nerve bundles less than 1.0 mm in diameter. This allows for recording and modulation of a low-frequency current targeted within the peripheral nervous system.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Doering OM, Vetter C, Alhawwash A, Horn MR, Yoshida K. Durable scalable 3D SLA-printed cuff electrodes with high performance carbon + PEDOT:PSS-based contacts. Artif Organs. 2022;46(10):2085-2096. doi:10.1111/aor.14387
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Artificial Organs
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}