In Vivo Dissection of Chamber-Selective Enhancers Reveals Estrogen-Related Receptor as a Regulator of Ventricular Cardiomyocyte Identity
dc.contributor.author | Cao, Yangpo | |
dc.contributor.author | Zhang, Xiaoran | |
dc.contributor.author | Akerberg, Brynn N. | |
dc.contributor.author | Yuan, Haiyun | |
dc.contributor.author | Sakamoto, Tomoya | |
dc.contributor.author | Xiao, Feng | |
dc.contributor.author | VanDusen, Nathan J. | |
dc.contributor.author | Zhou, Pingzhu | |
dc.contributor.author | Sweat, Mason E. | |
dc.contributor.author | Wang, Yi | |
dc.contributor.author | Prondzynski, Maksymilian | |
dc.contributor.author | Chen, Jian | |
dc.contributor.author | Zhang, Yan | |
dc.contributor.author | Wang, Peizhe | |
dc.contributor.author | Kelly, Daniel P. | |
dc.contributor.author | Pu, William T. | |
dc.contributor.department | Pediatrics, School of Medicine | |
dc.date.accessioned | 2023-11-20T12:41:45Z | |
dc.date.available | 2023-11-20T12:41:45Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Background: Cardiac chamber-selective transcriptional programs underpin the structural and functional differences between atrial and ventricular cardiomyocytes (aCMs and vCMs). The mechanisms responsible for these chamber-selective transcriptional programs remain largely undefined. Methods: We nominated candidate chamber-selective enhancers (CSEs) by determining the genome-wide occupancy of 7 key cardiac transcription factors (GATA4, MEF2A, MEF2C, NKX2-5, SRF, TBX5, TEAD1) and transcriptional coactivator P300 in atria and ventricles. Candidate enhancers were tested using an adeno-associated virus-mediated massively parallel reporter assay. Chromatin features of CSEs were evaluated by performing assay of transposase accessible chromatin sequencing and acetylation of histone H3 at lysine 27-HiChIP on aCMs and vCMs. CSE sequence requirements were determined by systematic tiling mutagenesis of 29 CSEs at 5 bp resolution. Estrogen-related receptor (ERR) function in cardiomyocytes was evaluated by Cre-loxP-mediated inactivation of ERRα and ERRγ in cardiomyocytes. Results: We identified 134 066 and 97 506 regions reproducibly occupied by at least 1 transcription factor or P300, in atria or ventricles, respectively. Enhancer activities of 2639 regions bound by transcription factors or P300 were tested in aCMs and vCMs by adeno-associated virus-mediated massively parallel reporter assay. This identified 1092 active enhancers in aCMs or vCMs. Several overlapped loci associated with cardiovascular disease through genome-wide association studies, and 229 exhibited chamber-selective activity in aCMs or vCMs. Many CSEs exhibited differential chromatin accessibility between aCMs and vCMs, and CSEs were enriched for aCM- or vCM-selective acetylation of histone H3 at lysine 27-anchored loops. Tiling mutagenesis of 29 CSEs identified the binding motif of ERRα/γ as important for ventricular enhancer activity. The requirement of ERRα/γ to activate ventricular CSEs and promote vCM identity was confirmed by loss of the vCM gene profile in ERRα/γ knockout vCMs. Conclusions: We identified 229 CSEs that could be useful research tools or direct therapeutic gene expression. We showed that chamber-selective multi-transcription factor, P300 occupancy, open chromatin, and chromatin looping are predictive features of CSEs. We found that ERRα/γ are essential for maintenance of ventricular identity. Finally, our gene expression, epigenetic, 3-dimensional genome, and enhancer activity atlas provide key resources for future studies of chamber-selective gene regulation. | |
dc.eprint.version | Final published version | |
dc.identifier.citation | Cao Y, Zhang X, Akerberg BN, et al. In Vivo Dissection of Chamber-Selective Enhancers Reveals Estrogen-Related Receptor as a Regulator of Ventricular Cardiomyocyte Identity. Circulation. 2023;147(11):881-896. doi:10.1161/CIRCULATIONAHA.122.061955 | |
dc.identifier.uri | https://hdl.handle.net/1805/37154 | |
dc.language.iso | en_US | |
dc.publisher | Wolters Kluwer | |
dc.relation.isversionof | 10.1161/CIRCULATIONAHA.122.061955 | |
dc.relation.journal | Circulation | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.source | PMC | |
dc.subject | Enhancer elements | |
dc.subject | Genetic | |
dc.subject | Epigenomics | |
dc.subject | ERRalpha estrogen-related receptor | |
dc.subject | Gene expression regulation | |
dc.subject | Heart atria | |
dc.subject | Heart ventricles | |
dc.title | In Vivo Dissection of Chamber-Selective Enhancers Reveals Estrogen-Related Receptor as a Regulator of Ventricular Cardiomyocyte Identity | |
dc.type | Article |