Formation and evolution of an extensive blue ice moraine in central Transantarctic Mountains, Antarctica

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2020-02
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Cambridge UP
Abstract

Mount Achernar moraine is a terrestrial sediment archive that preserves a record of ice-sheet dynamics and climate over multiple glacial cycles. Similar records exist in other blue ice moraines elsewhere on the continent, but an understanding of how these moraines form is limited. We propose a model to explain the formation of extensive, coherent blue ice moraine sequences based on the integration of ground-penetrating radar (GPR) data with ice velocity and surface exposure ages. GPR transects (100 and 25 MHz) both perpendicular and parallel to moraine ridges at Mount Achernar reveal an internal structure defined by alternating relatively clean ice and steeply dipping debris bands extending to depth, and where visible, to the underlying bedrock surface. Sediment is carried to the surface from depth along these debris bands, and sublimates out of the ice, accumulating over time (>300 ka). The internal pattern of dipping reflectors, combined with increasing surface exposure ages, suggest sequential exposure of the sediment where ice and debris accretes laterally to form the moraine. Subsurface structure varies across the moraine and can be linked to changes in basal entrainment conditions. We speculate that higher concentrations of debris may have been entrained in the ice during colder glacial periods or entrained more proximal to the moraine sequence.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Kassab, C. M., Licht, K. J., Petersson, R., Lindbäck, K., Graly, J. A., & Kaplan, M. R. (2020). Formation and evolution of an extensive blue ice moraine in central Transantarctic Mountains, Antarctica. Journal of Glaciology, 66(255), 49–60. https://doi.org/10.1017/jog.2019.83
ISSN
0022-1430
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Glaciology
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}