Solutions of diophantine equations as periodic points of p-adic algebraic functions, II: The Rogers-Ramanujan continued fraction

dc.contributor.authorMorton, Patrick
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2020-09-17T20:16:46Z
dc.date.available2020-09-17T20:16:46Z
dc.date.issued2019
dc.description.abstractIn this part we show that the diophantine equation X5+Y5=ε5(1−X5Y5) , where ε=−1+5√2 , has solutions in specific abelian extensions of quadratic fields K=Q(−d−−−√) in which −d≡±1 (mod 5 ). The coordinates of these solutions are values of the Rogers-Ramanujan continued fraction r(τ) , and are shown to be periodic points of an algebraic function.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationMorton, P. (2019). Solutions of diophantine equations as periodic points of p-adic algebraic f...: Discovery Service (IUPUI). New York Journal of Mathematics. http://arxiv.org/abs/1806.11079en_US
dc.identifier.urihttps://hdl.handle.net/1805/23866
dc.language.isoenen_US
dc.relation.journalNew York Journal of Mathematicsen_US
dc.rightsPublisher Policyen_US
dc.sourceArXiven_US
dc.subjectdiophantine equationsen_US
dc.subjectThe Rogers-Ramanujan continued fractionen_US
dc.subjectalgebraic functionen_US
dc.titleSolutions of diophantine equations as periodic points of p-adic algebraic functions, II: The Rogers-Ramanujan continued fractionen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Morton_2019_solutions.pdf
Size:
469.88 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: