Solutions of diophantine equations as periodic points of p-adic algebraic functions, II: The Rogers-Ramanujan continued fraction
dc.contributor.author | Morton, Patrick | |
dc.contributor.department | Mathematical Sciences, School of Science | en_US |
dc.date.accessioned | 2020-09-17T20:16:46Z | |
dc.date.available | 2020-09-17T20:16:46Z | |
dc.date.issued | 2019 | |
dc.description.abstract | In this part we show that the diophantine equation X5+Y5=ε5(1−X5Y5) , where ε=−1+5√2 , has solutions in specific abelian extensions of quadratic fields K=Q(−d−−−√) in which −d≡±1 (mod 5 ). The coordinates of these solutions are values of the Rogers-Ramanujan continued fraction r(τ) , and are shown to be periodic points of an algebraic function. | en_US |
dc.eprint.version | Author's manuscript | en_US |
dc.identifier.citation | Morton, P. (2019). Solutions of diophantine equations as periodic points of p-adic algebraic f...: Discovery Service (IUPUI). New York Journal of Mathematics. http://arxiv.org/abs/1806.11079 | en_US |
dc.identifier.uri | https://hdl.handle.net/1805/23866 | |
dc.language.iso | en | en_US |
dc.relation.journal | New York Journal of Mathematics | en_US |
dc.rights | Publisher Policy | en_US |
dc.source | ArXiv | en_US |
dc.subject | diophantine equations | en_US |
dc.subject | The Rogers-Ramanujan continued fraction | en_US |
dc.subject | algebraic function | en_US |
dc.title | Solutions of diophantine equations as periodic points of p-adic algebraic functions, II: The Rogers-Ramanujan continued fraction | en_US |
dc.type | Article | en_US |