MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification

dc.contributor.authorWang, Tongxin
dc.contributor.authorShao, Wei
dc.contributor.authorHuang, Zhi
dc.contributor.authorTang, Haixu
dc.contributor.authorZhang, Jie
dc.contributor.authorDing, Zhengming
dc.contributor.authorHuang, Kun
dc.contributor.departmentMedicine, School of Medicineen_US
dc.date.accessioned2023-02-10T18:20:04Z
dc.date.available2023-02-10T18:20:04Z
dc.date.issued2021-06-08
dc.description.abstractTo fully utilize the advances in omics technologies and achieve a more comprehensive understanding of human diseases, novel computational methods are required for integrative analysis of multiple types of omics data. Here, we present a novel multi-omics integrative method named Multi-Omics Graph cOnvolutional NETworks (MOGONET) for biomedical classification. MOGONET jointly explores omics-specific learning and cross-omics correlation learning for effective multi-omics data classification. We demonstrate that MOGONET outperforms other state-of-the-art supervised multi-omics integrative analysis approaches from different biomedical classification applications using mRNA expression data, DNA methylation data, and microRNA expression data. Furthermore, MOGONET can identify important biomarkers from different omics data types related to the investigated biomedical problems.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationWang T, Shao W, Huang Z, et al. MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nat Commun. 2021;12(1):3445. Published 2021 Jun 8. doi:10.1038/s41467-021-23774-wen_US
dc.identifier.urihttps://hdl.handle.net/1805/31216
dc.language.isoen_USen_US
dc.publisherSpringer Natureen_US
dc.relation.isversionof10.1038/s41467-021-23774-wen_US
dc.relation.journalNature Communicationsen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourcePMCen_US
dc.subjectComputational biologyen_US
dc.subjectBioinformaticsen_US
dc.subjectMachine learningen_US
dc.subjectSystems biologyen_US
dc.subjectBiomarkersen_US
dc.titleMOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identificationen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
41467_2021_Article_23774.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: