On Concircular Transformations in Finsler Geometry
dc.contributor.author | Shen, Zhongmin | |
dc.contributor.author | Yang, Guojun | |
dc.contributor.department | Mathematical Sciences, School of Science | en_US |
dc.date.accessioned | 2020-01-31T15:37:23Z | |
dc.date.available | 2020-01-31T15:37:23Z | |
dc.date.issued | 2019 | |
dc.description.abstract | A geodesic circle in Finsler geometry is a natural extension of that in a Euclidean space. In this paper, we study geodesic circles and (infinitesimal) concircular transformations on a Finsler manifold. We characterize a concircular vector field with some PDEs on the tangent bundle, and then we obtain respectively necessary and sufficient conditions for a concircular vector field to be conformal and a conformal vector field to be concircular. We also show conditions for two conformally related Finsler metrics to be concircular, and obtain some invariant curvature properties under conformal and concircular transformations. | en_US |
dc.eprint.version | Author's manuscript | en_US |
dc.identifier.citation | Shen, Z., & Yang, G. (2019). On Concircular Transformations in Finsler Geometry. Results in Mathematics, 74(4), 162. https://doi.org/10.1007/s00025-019-1088-6 | en_US |
dc.identifier.uri | https://hdl.handle.net/1805/21946 | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.isversionof | 10.1007/s00025-019-1088-6 | en_US |
dc.relation.journal | Results in Mathematics | en_US |
dc.rights | Publisher Policy | en_US |
dc.source | Author | en_US |
dc.subject | geodesic circle | en_US |
dc.subject | conformal/concircular transformation | en_US |
dc.subject | flag curvature | en_US |
dc.title | On Concircular Transformations in Finsler Geometry | en_US |
dc.type | Article | en_US |