Detecting white matter alterations in multiple sclerosis using advanced diffusion magnetic resonance imaging
dc.contributor.author | Mustafi, Sourajit M. | |
dc.contributor.author | Harezlak, Jaroslaw | |
dc.contributor.author | Kodiweera, Chandana | |
dc.contributor.author | Randolph, Jennifer S. | |
dc.contributor.author | Ford, James C. | |
dc.contributor.author | Wishart, Heather A. | |
dc.contributor.author | Wu, Yu-Chien | |
dc.contributor.department | Radiology and Imaging Sciences, School of Medicine | en_US |
dc.date.accessioned | 2019-07-17T17:20:01Z | |
dc.date.available | 2019-07-17T17:20:01Z | |
dc.date.issued | 2019-01 | |
dc.description.abstract | Multiple sclerosis is a neurodegenerative and inflammatory disease, a hallmark of which is demyelinating lesions in the white matter. We hypothesized that alterations in white matter microstructures can be non-invasively characterized by advanced diffusion magnetic resonance imaging. Seven diffusion metrics were extracted from hybrid diffusion imaging acquisitions via classic diffusion tensor imaging, neurite orientation dispersion and density imaging, and q-space imaging. We investigated the sensitivity of the diffusion metrics in 36 sets of regions of interest in the brain white matter of six female patients (age 52.8 ± 4.3 years) with multiple sclerosis. Each region of interest set included a conventional T2-defined lesion, a matched perilesion area, and normal-appearing white matter. Six patients with multiple sclerosis (n = 5) or clinically isolated syndrome (n = 1) at a mild to moderate disability level were recruited. The patients exhibited microstructural alterations from normal-appearing white matter transitioning to perilesion areas and lesions, consistent with decreased tissue restriction, decreased axonal density, and increased classic diffusion tensor imaging diffusivity. The findings suggest that diffusion compartment modeling and q-space analysis appeared to be sensitive for detecting subtle microstructural alterations between perilesion areas and normal-appearing white matter. | en_US |
dc.identifier.citation | Mustafi, S. M., Harezlak, J., Kodiweera, C., Randolph, J. S., Ford, J. C., Wishart, H. A., & Wu, Y. C. (2019). Detecting white matter alterations in multiple sclerosis using advanced diffusion magnetic resonance imaging. Neural regeneration research, 14(1), 114–123. doi:10.4103/1673-5374.243716 | en_US |
dc.identifier.uri | https://hdl.handle.net/1805/19891 | |
dc.language.iso | en_US | en_US |
dc.publisher | Wolters Kluwer | en_US |
dc.relation.isversionof | 10.4103/1673-5374.243716 | en_US |
dc.relation.journal | Neural Regeneration Research | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | PMC | en_US |
dc.subject | Multiple sclerosis | en_US |
dc.subject | Hybrid diffusion imaging | en_US |
dc.subject | NODDI | en_US |
dc.subject | Diffusion tensor imaging | en_US |
dc.subject | Q-space imaging | en_US |
dc.title | Detecting white matter alterations in multiple sclerosis using advanced diffusion magnetic resonance imaging | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Detecting white matter alterations in multiple sclerosis using advanced diffusi.pdf
- Size:
- 894.01 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.99 KB
- Format:
- Item-specific license agreed upon to submission
- Description: