Principal regression for high dimensional covariance matrices

dc.contributor.authorZhao, Yi
dc.contributor.authorCaffo, Brian
dc.contributor.authorLuo, Xi
dc.contributor.authorAlzheimer’s Disease Neuroimaging Initiative
dc.contributor.departmentBiostatistics, School of Public Health
dc.date.accessioned2023-07-31T14:12:42Z
dc.date.available2023-07-31T14:12:42Z
dc.date.issued2021
dc.description.abstractThis manuscript presents an approach to perform generalized linear regression with multiple high dimensional covariance matrices as the outcome. In many areas of study, such as resting-state functional magnetic resonance imaging (fMRI) studies, this type of regression can be utilized to characterize variation in the covariance matrices across units. Model parameters are estimated by maximizing a likelihood formulation of a generalized linear model, conditioning on a well-conditioned linear shrinkage estimator for multiple covariance matrices, where the shrinkage coefficients are proposed to be shared across matrices. Theoretical studies demonstrate that the proposed covariance matrix estimator is optimal achieving the uniformly minimum quadratic loss asymptotically among all linear combinations of the identity matrix and the sample covariance matrix. Under certain regularity conditions, the proposed estimator of the model parameters is consistent. The superior performance of the proposed approach over existing methods is illustrated through simulation studies. Implemented to a resting-state fMRI study acquired from the Alzheimer's Disease Neuroimaging Initiative, the proposed approach identified a brain network within which functional connectivity is significantly associated with Apolipoprotein E ε4, a strong genetic marker for Alzheimer's disease.
dc.eprint.versionAuthor's manuscript
dc.identifier.citationZhao Y, Caffo B, Luo X; Alzheimer’s Disease Neuroimaging Initiative. Principal regression for high dimensional covariance matrices. Electron J Stat. 2021;15(2):4192-4235. doi:10.1214/21-ejs1887
dc.identifier.urihttps://hdl.handle.net/1805/34614
dc.language.isoen_US
dc.publisherInstitute of Mathematical Statistics
dc.relation.isversionof10.1214/21-ejs1887
dc.relation.journalElectronic Journal of Statistics
dc.rightsPublisher Policy
dc.sourcePMC
dc.subjectCovariance matrix estimation
dc.subjectGeneralized linear regression
dc.subjectHeteroscedasticity
dc.subjectShrinkage estimator
dc.titlePrincipal regression for high dimensional covariance matrices
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms-1765239.pdf
Size:
1.39 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: