Notch3 signaling between myeloma cells and osteocytes in the tumor niche promotes tumor growth and bone destruction

dc.contributor.authorSabol, Hayley M.
dc.contributor.authorAmorim, Tânia
dc.contributor.authorAshby, Cody
dc.contributor.authorHalladay, David
dc.contributor.authorAnderson, Judith
dc.contributor.authorCregor, Meloney
dc.contributor.authorSweet, Megan
dc.contributor.authorNookaew, Intawat
dc.contributor.authorKurihara, Noriyoshi
dc.contributor.authorRoodman, G. David
dc.contributor.authorBellido, Teresita
dc.contributor.authorDelgado-Calle, Jesus
dc.contributor.departmentMedicine, School of Medicineen_US
dc.date.accessioned2023-06-12T11:45:04Z
dc.date.available2023-06-12T11:45:04Z
dc.date.issued2022
dc.description.abstractIn multiple myeloma (MM), communication via Notch signaling in the tumor niche stimulates tumor progression and bone destruction. We previously showed that osteocytes activate Notch, increase Notch3 expression, and stimulate proliferation in MM cells. We show here that Notch3 inhibition in MM cells reduced MM proliferation, decreased Rankl expression, and abrogated the ability of MM cells to promote osteoclastogenesis. Further, Notch3 inhibition in MM cells partially prevented the Notch activation and increased proliferation induced by osteocytes, demonstrating that Notch3 mediates MM-osteocyte communication. Consistently, pro-proliferative and pro-osteoclastogenic pathways were upregulated in CD138+ cells from newly diagnosed MM patients with high vs. low NOTCH3 expression. These results show that NOTCH3 signaling in MM cells stimulates proliferation and increases their osteoclastogenic potential. In contrast, Notch2 inhibition did not alter MM cell proliferation or communication with osteocytes. Lastly, mice injected with Notch3 knock-down MM cells had a 50% decrease in tumor burden and a 50% reduction in osteolytic lesions than mice bearing control MM cells. Together, these findings identify Notch3 as a mediator of cell communication among MM cells and between MM cells and osteocytes in the MM tumor niche and warrant future studies to exploit Notch3 as a therapeutic target to treat MM.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationSabol HM, Amorim T, Ashby C, et al. Notch3 signaling between myeloma cells and osteocytes in the tumor niche promotes tumor growth and bone destruction. Neoplasia. 2022;28:100785. doi:10.1016/j.neo.2022.100785en_US
dc.identifier.urihttps://hdl.handle.net/1805/33651
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.neo.2022.100785en_US
dc.relation.journalNeoplasiaen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourcePMCen_US
dc.subjectNotchen_US
dc.subjectOsteocytesen_US
dc.subjectMyelomaen_US
dc.subjectCanceren_US
dc.subjectBoneen_US
dc.subjectTumor microenvironmenten_US
dc.titleNotch3 signaling between myeloma cells and osteocytes in the tumor niche promotes tumor growth and bone destructionen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
main.pdf
Size:
3.53 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: