SCIPAC: quantitative estimation of cell-phenotype associations

dc.contributor.authorGan, Dailin
dc.contributor.authorZhu, Yini
dc.contributor.authorLu, Xin
dc.contributor.authorLi, Jun
dc.contributor.departmentMedicine, School of Medicine
dc.date.accessioned2024-08-02T08:57:08Z
dc.date.available2024-08-02T08:57:08Z
dc.date.issued2024-05-13
dc.description.abstractNumerous algorithms have been proposed to identify cell types in single-cell RNA sequencing data, yet a fundamental problem remains: determining associations between cells and phenotypes such as cancer. We develop SCIPAC, the first algorithm that quantitatively estimates the association between each cell in single-cell data and a phenotype. SCIPAC also provides a p-value for each association and applies to data with virtually any type of phenotype. We demonstrate SCIPAC's accuracy in simulated data. On four real cancerous or noncancerous datasets, insights from SCIPAC help interpret the data and generate new hypotheses. SCIPAC requires minimum tuning and is computationally very fast.
dc.eprint.versionFinal published version
dc.identifier.citationGan D, Zhu Y, Lu X, Li J. SCIPAC: quantitative estimation of cell-phenotype associations. Genome Biol. 2024;25(1):119. Published 2024 May 13. doi:10.1186/s13059-024-03263-1
dc.identifier.urihttps://hdl.handle.net/1805/42561
dc.language.isoen_US
dc.publisherSpringer Nature
dc.relation.isversionof10.1186/s13059-024-03263-1
dc.relation.journalGenome Biology
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourcePMC
dc.subjectCancer research
dc.subjectPhenotype association
dc.subjectRNA sequencing
dc.subjectSingle cell
dc.titleSCIPAC: quantitative estimation of cell-phenotype associations
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gan2024Quantitative-CCBY.pdf
Size:
4.32 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: