Bad Representations and Homotopy of Character Varieties

dc.contributor.authorGuérin, Clément
dc.contributor.authorLawton, Sean
dc.contributor.authorRamras, Daniel
dc.contributor.departmentMathematical Sciences, School of Science
dc.date.accessioned2023-11-01T18:54:05Z
dc.date.available2023-11-01T18:54:05Z
dc.date.issued2022
dc.description.abstractLet G be a connected reductive complex affine algebraic group, and let Xr denote the moduli space of G-valued representations of a rank r free group.We first characterize the singularities in Xr, extending a theorem of Richardson and proving a Mumford-type result about topological singularities; this resolves conjectures of Florentino–Lawton. In particular, we compute the codimension of the orbifold singular locus using facts about Borel–de Siebenthal subgroups. We then use the codimension bound to calculate higher homotopy groups of the smooth locus of Xr, proving conjectures of Florentino–Lawton–Ramras. Lastly, using the earlier analysis of Borel–de Siebenthal subgroups, we prove a conjecture of Sikora about centralizers of irreducible representations in Lie groups.
dc.eprint.versionFinal published version
dc.identifier.citationGuérin, C., Lawton, S., & Ramras, D. (2022). Bad Representations and Homotopy of Character Varieties. Annales Henri Lebesgue, 5, 93–140. https://doi.org/10.5802/ahl.119
dc.identifier.urihttps://hdl.handle.net/1805/36847
dc.language.isoen_US
dc.publisherENS Rennes
dc.relation.isversionof10.5802/ahl.119
dc.relation.journalAnnales Henri Lebesgue
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourcePublisher
dc.subjectcharacter variety
dc.subjectBorel-de Siebenthal subgroups
dc.subjectfree group
dc.subjecthomotopy groups
dc.subjectsingularities
dc.titleBad Representations and Homotopy of Character Varieties
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Guerin2022Bad-CCBY.pdf
Size:
804.27 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: