TrimNN: Characterizing cellular community motifs for studying multicellular topological organization in complex tissues
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
The spatial arrangement of cells plays a pivotal role in shaping tissue functions in various biological systems and diseased microenvironments. However, it is still under-investigated of the topological coordinating rules among different cell types as tissue spatial patterns. Here, we introduce the Triangulation cellular community motif Neural Network (TrimNN), a bottom-up approach to estimate the prevalence of sizeable conservative cell organization patterns as Cellular Community (CC) motifs in spatial transcriptomics and proteomics. Different from clustering cell type composition from classical top-down analysis, TrimNN differentiates cellular niches as countable topological blocks in recurring interconnections of various types, representing multicellular neighborhoods with interpretability and generalizability. This graph-based deep learning framework adopts inductive bias in CCs and uses a semi-divide and conquer approach in the triangulated space. In spatial omics studies, various sizes of CC motifs identified by TrimNN robustly reveal relations between spatially distributed cell-type patterns and diverse phenotypical biological functions.