Mechanical stimulation and intermittent parathyroid hormone treatment induce disproportional osteogenic, geometric, and biomechanical effects in growing mouse bone

Date
2010
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Mechanical loading and intermittent parathyroid (iPTH) treatment are both osteoanabolic stimuli and are regulated by partially overlapping cellular signaling pathways. iPTH has been shown clinically to be effective in increasing bone mass and reducing fracture risk. Likewise, mechanical stimulation can significantly enhance bone apposition and prevent bone loss, but its clinical effects on fracture susceptibility are less certain. Many of the osteogenic effects of iPTH are localized to biomechanically suboptimal bone surfaces, whereas mechanical loading directs new bone formation to high-stress areas and not to strain-neutral areas. These differences in localization in new tissue, resulting from load-induced versus iPTH-induced bone accumulation, should affect the relation between bone mass and bone strength, or "tissue economy." We investigated the changes in bone mass and strength induced by 6 weeks of mechanical loading and compared them to changes induced by 6 weeks of iPTH treatment. Loading and iPTH both increased ulnar bone accrual, as measured by bone mineral density and content, and fluorochrome-derived bone formation. iPTH induced a significantly greater increase in bone mass than loading, but ulnar bone strength was increased approximately the same amount by both treatments. Mechanical loading during growth can spatially optimize new bone formation to improve structural integrity with a minimal increase in mass, thereby increasing tissue economy, i.e., the amount of strength returned per unit bone mass added. Furthermore, exercise studies in which only small changes in bone mass are detected might be more beneficial to bone health and fracture resistance than has commonly been presumed.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
McAteer ME, Niziolek PJ, Ellis SN, Alge DL, Robling AG. Mechanical stimulation and intermittent parathyroid hormone treatment induce disproportional osteogenic, geometric, and biomechanical effects in growing mouse bone. Calcif Tissue Int. 2010;86(5):389-396. doi:10.1007/s00223-010-9348-1
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Calcified Tissue International
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}