Identifying Associations Between Brain Imaging Phenotypes and Genetic Factors via A Novel Structured SCCA Approach
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Brain imaging genetics attracts more and more attention since it can reveal associations between genetic factors and the structures or functions of human brain. Sparse canonical correlation analysis (SCCA) is a powerful bi-multivariate association identification technique in imaging genetics. There have been many SCCA methods which could capture different types of structured imaging genetic relationships. These methods either use the group lasso to recover the group structure, or employ the graph/network guided fused lasso to find out the network structure. However, the group lasso methods have limitation in generalization because of the incomplete or unavailable prior knowledge in real world. The graph/network guided methods are sensitive to the sign of the sample correlation which may be incorrectly estimated. We introduce a new SCCA model using a novel graph guided pairwise group lasso penalty, and propose an efficient optimization algorithm. The proposed method has a strong upper bound for the grouping effect for both positively and negatively correlated variables. We show that our method performs better than or equally to two state-of-the-art SCCA methods on both synthetic and real neuroimaging genetics data. In particular, our method identifies stronger canonical correlations and captures better canonical loading profiles, showing its promise for revealing biologically meaningful imaging genetic associations.