Vocation Clustering for Heavy-Duty Vehicles

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2020-12
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.E.C.E.
Degree Year
2020
Department
Electrical & Computer Engineering
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

The identification of the vocation of an unknown heavy-duty vehicle is valuable to parts manufacturers who may not have otherwise access to this information on a consistent basis. This study proposes a methodology for vocation identification that is based on clustering techniques. Two clustering algorithms are considered: K-Means and Expectation Maximization. These algorithms are used to first construct the operating profile of each vocation from a set of vehicles with known vocations. The vocation of an unknown vehicle is then determined using different assignment methods.

These methods fall under two main categories: one-versus-all and one-versus-one. The one-versus-all approach compares an unknown vehicle to all potential vocations. The one-versus-one approach compares the unknown vehicle to two vocations at a time in a tournament fashion. Two types of tournaments are investigated: round-robin and bracket. The accuracy and efficiency of each of the methods is evaluated using the NREL FleetDNA dataset.

The study revealed that some of the vocations may have unique operating profiles and are therefore easily distinguishable from others. Other vocations, however, can have confounding profiles. This indicates that different vocations may benefit from profiles with varying number of clusters. Determining the optimal number of clusters for each vocation can not only improve the assignment accuracy, but also enhance the computational efficiency of the application. The optimal number of clusters for each vocation is determined using both static and dynamic techniques. Static approaches refer to methods that are completed prior to training and may require multiple iterations. Dynamic techniques involve clusters being split or removed during training. The results show that the accuracy of dynamic techniques is comparable to that of static approaches while benefiting from a reduced computational time.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}