Unlocking Superior MFH Performance Below Hergt’s Biological Safety Limit: SPION-Based Magnetic Nanoplatforms Deliver High Heating Efficiency at Low AMF
Date
Authors
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have gained significant attention for Magnetic Fluid Hyperthermia (MFH)-based cancer therapy. However, achieving high heating efficiency under a biologically safe Alternating Magnetic Field (AMF) remains a challenge. This study investigates the synthesis and optimization of SPIONs encapsulated in TPGS-stabilized PLGA nanoparticles (TPS-NPs) using a modified single emulsion solvent evaporation (M-SESE) method. The aim was to achieve efficient magnetic heating under biologically safe AMF conditions while maintaining biocompatibility and colloidal stability, making these magnetic nanoplatforms suitable for MFH-based cancer treatment. TPS-NPs were characterized using various techniques, including Dynamic Light Scattering (DLS), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), and Superconducting Quantum Interference Device (SQUID) magnetometry, to evaluate their hydrodynamic size (Dh), zeta potential (ζ), encapsulation efficiency, and superparamagnetic properties. Calorimetric MFH studies demonstrated superior heating efficiency, with Specific Absorption Rate (SAR) and Intrinsic Loss Power (ILP) values optimized at an AMF of 4.1 GAm-1s-1, remaining within Hergt's biological safety limit (~5 GAm-1s-1). These findings suggest that SPION-encapsulated TPS-NPs exhibit enhanced heat induction, making them promising candidates for MFH-based cancer therapy. The study highlights their potential as multifunctional nanoplatforms for magnetic hyperthermia therapy, paving the way for clinical translation in oncology for advanced cancer treatment.
